地面无人作战平台导航技术发展现状与趋势

韩勇强, 李利华, 陈家斌, 吴限, 李磊磊, 李蓉

导航与控制 ›› 2020, Vol. 19 ›› Issue (4-5) : 96-110.

PDF(2813 KB)
PDF(2813 KB)
导航与控制 ›› 2020, Vol. 19 ›› Issue (4-5) : 96-110. DOI: 10.3969/j.issn.1674-5558.2020.h4.012
导航与制导

地面无人作战平台导航技术发展现状与趋势

  • 韩勇强1, 李利华1, 陈家斌1, 吴限1, 李磊磊1, 李蓉2
作者信息 +

Review of INS-based Navigation Technology for Ground Unmanned Platforms

  • HAN Yong-qiang1, LI Li-hua1, CHEN Jia-bin1, WU Xian1, LI Lei-lei1, LI Rong2
Author information +
文章历史 +

摘要

当前,国内外地面无人作战平台处于快速发展阶段,其自主性、智能性的特点使得其相较于传统地面武器平台对导航系统提出了更高的要求,除了具备常规意义上的测姿、定位、定向等功能之外,还需要具备环境相对位姿感知与导航能力。目前,典型的地面无人平台均采用惯性基组合导航方案,以惯性传感器为主,配备卫星、视觉、雷达等多类辅助传感器,通过组合导航算法实现传感器间的有机融合。针对地面无人作战平台的导航需求,对当前主流惯性基组合导航技术进行梳理,分别介绍了惯性/里程计、惯性/卫星、惯性/视觉、惯性/激光雷达组合导航技术的发展现状,并对适用于地面无人作战平台的导航技术进行了展望。

Abstract

With the rapid development of military ground unmanned platform(GUP) technology, demands for better navigation systems for features such as high autonomy and intelligence are improved significantly. Apart from typical positioning and orientation determination, the ability of environmental sensation is especially needed. By equipping various sensors, the importance of INS based multi-sensor fusion technology is elevated. In this paper, the main INS-based navigation methods are studied and sorted out based on the requirement of GUPs. Basic principles and state of the art of INS/odometer, INS/visual, INS/lidar integrated navigation technologies are introduced respectively. The development trends of those navigation technologies that are suitable for GUPs are prospected.

关键词

惯性基 / 组合导航 / 同步定位与建图 / 协同导航 / 仿生导航

Key words

INS-based / integrated navigation / simultaneous localization and mapping(SLAM) / cooperative navigation / bionic navigation

引用本文

导出引用
韩勇强, 李利华, 陈家斌, 吴限, 李磊磊, 李蓉. 地面无人作战平台导航技术发展现状与趋势[J]. 导航与控制, 2020, 19(4-5): 96-110 https://doi.org/10.3969/j.issn.1674-5558.2020.h4.012
HAN Yong-qiang, LI Li-hua, CHEN Jia-bin, WU Xian, LI Lei-lei, LI Rong. Review of INS-based Navigation Technology for Ground Unmanned Platforms[J]. Navigation and Control, 2020, 19(4-5): 96-110 https://doi.org/10.3969/j.issn.1674-5558.2020.h4.012
中图分类号: TP29   

参考文献

[1] 王桂芝, 沈卫. 国外自主地面无人系统发展综述[J]. 机器人技术与应用, 2017(6): 23-25.
WANG Gui-zhi, SHEN Wei. Overview of the development of foreign autonomous ground unmanned systems[J]. Robot Technique and Application, 2017(6): 23-25.
[2] Liu X, Dai B. The latest status and development trends of military unmanned ground vehicles[C]. Chinese Automa-tion Congress, 2013: 533-537.
[3] Farooq W, Ali Khan M, Rehman S. AMVR: a multicast routing protocol for autonomous military vehicles communication in VANET[C]. 14th International Bhurban Confer-ence on Applied Sciences and Technology, 2017: 699-706.
[4] 白亮, 严恭敏, 朱启举, 等. 里程计辅助的捷联惯导系统研究[J]. 弹箭与制导学报, 2013, 33(6): 16-18.
BAI Liang, YAN Gong-min, ZHU Qi-ju, et al. SINS/OD integrated navigation system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33 (6): 16-18.
[5] Hu J, Cheng X H. A new in-motion initial alignment for land-vehicle SINS/OD integrated system[C]. IEEE/ION Position, Location and Navigation Symposium, 2014: 407-412.
[6] 马智渊, 石志勇, 王志伟. 捷联惯导/里程计组合导航技术[J].火力与指挥控制, 2017, 42(2): 183-186.
MA Zhi-yuan, SHI Zhi-yong, WANG Zhi-wei. Strapdown inertial/odometer integrated navigation technology[J]. Fire Control & Command Control, 2017, 42 (2): 183-186.
[7] 付强文, 秦永元, 周琪. 改进量测的车载捷联惯导/里程计组合导航算法[J].测控技术, 2013, 32(7): 134-137+141.
FU Qiang-wen, QIN Yong-yuan, ZHOU Qi. Improved vehicular SINS/odometer integrated navigation algorithm[J]. Measurement & Control Technology, 2013, 32 (7): 134-137+141.
[8] 缪玲娟, 李春明, 郭振西, 等. 陆用捷联惯导系统/里程计自主式组合导航技术[J]. 北京理工大学学报, 2004, 24(9): 808-811.
MIAO Ling-juan, LI Chun-ming, GUO Zhen-xi, et al. Independently integrated navigation system of SINS and distance-transfer-unit for land vehicles[J]. Transactions of Beijing Institute of Technology, 2004, 24(9): 808-811.
[9] Jeanroy A, Grosset G, Goudon J C, et al. HRG by Sagem from laboratory to mass production[C]. IEEE Interna-tional Symposium on Inertial Sensors and Systems, 2016:1-4.
[10] Lenoble A, Rouilleault T. PRIMUS: SWAP-oriented IMUs for multiple applications[C]. DGON Intertial Senso-rs and Systems, 2016: 1-16.
[11] Meyer D, Rozelle D. Milli-HRG inertial navigation system[J]. Gyroscopy and Navigation, 2012, 3(4): 227-234.
[12] Leonard J, How J, Teller S, et al. A perception-driven autonomous urban vehicle[J]. Journal of Field Robotics, 2008, 25(10): 727-774.
[13] Petrovskaya A, Thrun S. Model based vehicle detection and tracking for autonomous urban driving[J]. Autono-mous Robots, 2009, 26(2-3): 123-139.
[14] Benson D. Interference benefits of a vector delay lock loop(VDLL) GPS receiver[C]. Proceedings of the 63rd Annual Meeting Institute of Navigation, 2007: 749-756.
[15] Park D B, Shin D H, Oh S H, et al. Velocity aiding-based anti-jamming method for GPS adaptor kits[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 54(184): 130-136.
[16] Soloviev A, Dickman T J. Deeply integrated GPS for indoor navigation[C]. International Conference on Indoor Positioning and Indoor Navigation, 2010: 1-9.
[17] Kiese S, Langer M, Eckert M, et al. Discriminator weighting and performance of a deeply coupled GPS/INS system at low CN0[C]. Proceedings of the International Technical Meeting of The Institute of Navigation, 2001: 858-867.
[18] Frontline Robotics keeps unmanned security vehicles on track with KVH fiber-optic gyros[J]. Military & Aerospace Electronics, 2009, 20(4):18.
[19] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]. IEEE International Conference on Robotics & Automation, 2007: 3565-3572.
[20] Huai Z, Huang G Q. Robocentric visual-inertial odometry[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018.
[21] Sun K, Mohta K, Pfrommer B, et al. Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 965-972.
[22] Paul M K, Wu K J, Hesch J A, et al. A comparative analysis of tightly-coupled monocular, binocular, and stereo VINS[C]. IEEE International Conference on Robo-tics and Automation, 2017: 165-172.
[23] Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. International Journal of Robotics Research, 2015, 34(3): 314-334.
[24] Von Stumberg L , Usenko V , Cremers D . Direct sparse visual-inertial odometry using dynamic marginalization[C]. IEEE International Conference on Robotics and Automa-tion, 2018: 2510-2517.
[25] Mur-Artal R, Tardós J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262.
[26] Bian J W, Li Z C, Wang N Y, et al. Unsupervised scale-consistent depth and ego-motion learning from monocular video[C]. 33rd Conference on Neural Information Proces-sing Systems, 2019.
[27] Kuznietsov Y, Stückler J, Leibe B. Semi-supervised deep learning for monocular depth map prediction[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2017: 2215-2223.
[28] Pilzer A, S Lathuilière, Xu D, et al. Progressive fusion for unsupervised binocular depth estimation using cycled network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2380-2395.
[29] Zhou T H, Brown M, Snavely N, et al. Unsupervised learning of depth and ego-motion from video[C]. IEEE International Conference on Computer Vision and Pattern Recognition,2017: 6612-6619.
[30] Tang J, Chen Y W, Niu X J, et al. LiDAR scan matching aided inertial navigation system in GNSS-denied environments[J]. Sensors, 2015, 15(7):16710-16728.
[31] Lynen S, Achtelik M W, Weiss S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: 3923-3929.
[32] Soloviev A, Bates D, Van Graas F. Tight coupling of laser scanner and inertial measurements for a fully autonomous relative navigation solution[J]. Navigation, 2007, 54(3): 189-205.
[33] Hemann G, Singh S, Kaess M. Long-range GPS-denied aerial inertial navigation with LIDAR localization[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016, 2016: 1659-1666.
[34] Bosse M, Zlot R. Continuous 3D scan-matching with a spinning 2D laser[C]. IEEE International Conference on Robotics and Automation, 2009: 4312-4319.
[35] Park C, Moghadam P, Kim S, et al. Elastic LiDAR fusion: dense map-centric continuous-time SLAM[C]. IEEE International Conference on Robotics and Automa-tion, 2018:1206-1213.
[36] Ye H Y, Chen Y Y, Liu M. Tightly coupled 3D Lidar inertial odometry and mapping[C]. International Conference on Robotics and Automation, 2019: 3144-3150.
[37] 戴海发, 卞鸿巍, 马恒, 等. 全源定位与导航的统一理论框架构建[J]. 导航定位与授时, 2018, 5(6): 9-16.
DAI Hai-fa, BIAN Hong-wei, MA Heng, et al. Unified theoretical framework construction of all source positioning and navigation[J]. Navigation Positioning and Timing, 2018, 5(6): 9:17
[38] Groves P D, Wang L, Walter D, et al. The four key challenges of advanced multisensor navigation and positioning[C]. IEEE/ION Position, Location and Navigation Symposium, 2014: 773-792.
[39] Chiu H P, Zhou X S, Carlone L, et al. Constrained optimal selection for multi-sensor robot navigation using plug-and-play[C]. IEEE International Conference on Robotics and Automation, 2014: 663-670.
[40] 许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 2017, 4(4): 1-9.
XU Xiao-wei, LAI Ji-zhou, LYU Pin, et al. A literature review on the research status and progress of cooperative navigation technology for multiple UAVs[J]. Navigation Positioning and Timing, 2017, 4(4): 1-9.
[41] STANAG 4586[EB/OL]. http://lockheedmartin. com/en-us/products/cdl-systems/stanag-4586.html.
[42] Roumeliotis S I, Bekey G A. Distributed multirobot localization[J]. IEEE Transactions on Robotics and Automa-tion, 2002, 18(5):781-795.
[43] 陶通, 黄亚楼, 苑晶, 等. 基于协助校正方法的多机器人主动同时定位与建图[J]. 模式识别与人工智能, 2012, 25(3): 534-543.
TAO Tong, HUANG Ya-lou, YUAN Jing, et al. Multi-robot active simultaneous localization and mapping based on cooperative correction approach[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3): 534-543.
[44] O' Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171-175.
[45] 杜现礼. 鸽子隐花色素磁敏感机理研究[D]. 国防科学技术大学, 2014.
DU Xian-li. The magnetoreception mechanism of cryptochrome 1 from domestic pigeons[D]. National University of Defense Technology, 2014.
[46] 王丹, 彭丰林, 马麦宁, 等. IGRF 国际地磁参考场模型可视化研究[J]. 地震地磁观测与研究, 2009, 30(4): 7-11.
WANG Dan, PENG Feng-lin, MA Mai-ning, et al. Virtualization research on IGRF 10(International Geomagnetic Reference Field) model[J]. Seismological and Geomagn-etic Observation and Research, 2009, 30(4): 7-11.
[47] 陈冲. 地磁辅助惯性导航系统研究[D]. 哈尔滨工业大学, 2014.
CHEN Chong. Research on geomagnetic aided inertial navigation system[D]. Harbin Institute of Technology, 2014.
[48] Möller R, Maris M, Lambrinos D. A neural model of landmark navigation in insects[J]. Neurocomputing, 1999, 26-27: 801-808.
[49] Thakoor S, Morookian J M, Chahl J S, et al. BEES: exploring Mars with bioinspired technologies[J]. Computer, 2004, 37(9): 38-47.
[50] Higashi Y, Tokuami H, Kimura H. Robot navigation using polarized light sensor without crossed-analyzer[C]. 6th International Symposium on Advanced Science and Technology in Experimental Mechanics. 2011, 110.
[51] Dupeyroux J, Serres J R, Viollet S. AntBot: a six-legged walking robot able to home like desert ants in outdoor environments[J]. Science Robotics, 2019, 4(27): eaau0307.

基金

国家重大专项(编号:GFZX0403260302);装发“十三五”预先研究(编号:41417070103,41417050102)
PDF(2813 KB)

4896

Accesses

0

Citation

Detail

段落导航
相关文章

/