导航与控制 ›› 2020, Vol. 19 ›› Issue (4/5): 223-236.doi: 10.3969/j.issn.1674-5558.2020.h4.026
刘俊, 曹慧亮, 石云波, 唐军, 申冲
收稿日期:
2020-03-18
出版日期:
2020-10-05
发布日期:
2020-12-22
通讯作者:
曹慧亮,工学博士,中北大学校聘教授,硕士研究生导师, 2014年毕业于东南大学仪器科学与技术专业,美国佐治亚理工学院联合培养博士,山西省高等学校青年学术带头人。主持国家基金、装备发展部重点领域基金等国家和省部级项目10项,获山西省教学成果二等奖1项,以第一/通信作者发表论文60篇(ESI高被引论文4篇),授权专利20项,指导学生参加各类学科竞赛获国家及省部级奖20余项,主要从事微机械陀螺、微机械加速度计、高过载环境相关方面的研究(为本文通信作者,Email:caohuiliang1986@126.com)。
作者简介:
刘俊,男,汉族,1968年生,教授、博士生导师,现任中北大学副校长、中北大学仪器与电子学院院长兼测试技术及仪器实验教学中心主任,为国家杰出青年基金获得者,科技部中青年创新领军人才,全国五一劳动奖状获得者,享受国务院特殊津贴专家。目前主要从事微纳光量子器件与智能测量和仿生传感与惯性导航研究,主持完成国家“973”“863”、国家自然科学基金重大仪器专项/重点、军委科技委JCJQ计划等项目50余项。获国家技术发明二等奖2项、省部级奖12项,发表SCI论文100余篇,授权国家发明专利50余项。
基金资助:
LIU Jun, CAO Hui-liang, SHI Yun-bo, TANG Jun, SHEN Chong
Received:
2020-03-18
Online:
2020-10-05
Published:
2020-12-22
摘要: 微惯性器件是目前制导战术武器的核心元器件,具有成本低、体积小、寿命长等优点,但是其如何在火炮膛内、侵彻着靶等过程中存活甚至正常工作,一直是各军事大国科研院所发展精确打击制导武器的重要研究方向。查阅了相关国内外文献,然后详细评述了目前关于应用于高过载环境下的微机械陀螺与微机械加速度计研究现状,指出了目前高过载环境微惯性器件的发展趋势与各国的研究进程,为我国发展高过载微惯性器件提供了方向与指导。
中图分类号:
刘俊, 曹慧亮, 石云波, 唐军, 申冲. 高过载微惯性器件研究现状[J]. 导航与控制, 2020, 19(4/5): 223-236.
LIU Jun, CAO Hui-liang, SHI Yun-bo, TANG Jun, SHEN Chong. Research Status of High Overload Micro Inertial Devices[J]. Navigation and Control, 2020, 19(4/5): 223-236.
[1] 胡陈君. 弹载小型抗高过载微惯性测量系统设计[D]. 中北大学, 2015. HU Chen-jun. Design of micro inertial measurement system for miniature projectile-based equipments against high overload[D]. North University of China, 2015. [2] Barnaby F. Precision-guided munitions and human suffer-ing in war[J]. Medicine Conflict and Survival, 2014, 30(1): 68-70. [3] 王巍. 惯性技术研究现状及发展趋势[J]. 自动化学报, 2013, 39(6): 723-729. WANG Wei. Status and development trend of inertial technology[J]. Acta Automatica Sinica, 2013, 39(6): 723-729. [4] 殷兴良. 海湾战争与精确制导武器[J]. 现代防御技术, 1991(S1):78-87. YIN Xing-liang. Gulf war and precision guided weapons[J]. Modern Defence Technology, 1991(S1): 78-87. [5] 曹慧亮, 张英杰, 寇志伟, 等. 抗高过载微机械陀螺仪研究综述[J]. 河北科技大学学报, 2018, 39(4): 289-298. CAO Hui-liang, ZHANG Ying-jie, KOU Zhi-wei, et al. Research overview of anti-high overload MEMS gyroscope[J]. Journal of Hebei University of Science and Technology, 2018, 39(4): 289-298. [6] Naseri H, Homaeinezhad M R. Improving measurement quality of a MEMS-based gyro-free inertial navigation system[J]. Sensors and Actuators A: Physical, 2014, 207: 10-19. [7] 王寿荣. 微惯性仪表与微系统[M]. 北京: 兵器工业出版社, 2011. WANG Shou-rong. Micro inertial instrument and micro system[M]. Beijing: Weapon Industry Press, 2011. [8] 薛连莉, 陈少春, 陈效真. 2016年国外惯性技术发展与回顾[J]. 导航与控制, 2017, 16(3): 105-112+84. XUE Lian-li, CHEN Shao-chun, CHEN Xiao-zhen. Development and review of foreign inertial technology in 2016[J]. Navigation and Control, 2017, 16(3): 105-112+84. [9] 鲁浩, 位晓峰, 庞秀枝. 惯性技术在精确制导武器中的应用与发展[J]. 电光与控制, 2007, 14(3): 45-47+58. LU Hao, WEI Xiao-feng, PANG Xiu-zhi. Application of inertial technology in precision guided munitions[J]. Electronics Optics & Control, 2007, 14(3): 45-47+58. [10] 薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制, 2018, 17(2):1-9+40. XUE Lian-li, CHEN Shao-chun, CHEN Xiao-zhen. Development and review of foreign inertial technology in 2017[J]. Navigation and Control, 2018, 17(2):1-9+40. [11] 刘繁明. 惯性器件及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2013. LIU Fan-ming. Inertial devices and applications[M]. Harbin: Harbin Institute of Technology Press, 2013. [12] 江城, 张嵘. 美国Micro-PNT发展综述[C]. 中国卫星导航学术年会, 2015. JIANG Cheng, ZHANG Rong. Overview on American Micro-PNT development[C]. China Satellite Navigation Academic Annual Conference, 2015. [13] 刘俊. 微惯性技术[M]. 北京: 电子工业出版社, 2005. LIU Jun. Microinertial technology[M]. Beijing: Electronics Industry Press, 2005. [14] Zhang R X, Chen Z Y, Zhang R. A micro-machined Silicon vibrating ring gyroscope[J]. Advanced Materials Research, 2011, 403-408: 4244-4251. [15] Liu K, Zhang W, Chen W, et al. A review of micro-gyroscope based on Coriolis acceleration[J]. Piezoelectrics & Acoustooptics, 2010, 32(3): 379-385. [16] 陶溢. 杯形波动陀螺关键技术研究[D]. 国防科学技术大学, 2011. TAO Yi. Study on key technologies of cupped wave gyroscope[D]. National University of Defense Technolo-gy, 2011. [17] Xia D Z, Yu C, Kong L. The development of micromachined gyroscope structure and circuitry technology[J]. Sensors, 2014, 14(1):1394-1473. [18] Cao H L, Li H S, Kou Z W, et al. Optimization and experimentation of dual-mass MEMS gyroscope quadrature error correction methods[J]. Sensors, 2016, 16: 71. [19] 丁衡高. 微型惯性器件及系统技术[M]. 北京: 国防工业出版社, 2014. DING Heng-gao. Micro inertial devices and system technology[M]. Beijing: National Defense Industry Press, 2014. [20] Du J Y, Gerdtman C, Lindén M. Signal quality improvement algorithms for MEMS gyroscope-based human motion analysis systems: a systematic review[J]. Sensors, 2018, 18(4): 1123-1139. [21] Tao Y, Wu X Z, Xiao D B, et al. Design, analysis and experiment of a novel ring vibratory gyroscope[J]. Sensors and Actuators A: Physical, 2011, 168(2): 286-299. [22] Zhou X, Wu Y L, Wu X Z, et al. A novel ring vibrating gyroscope based on side piezo-electrodes[J]. Journal of Central South University, 2016, 23(3):555-561. [23] Cao H L, Li H S, Shao X L, et al. Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range[J]. Mechanical Systems and Signal Processing, 2018, 98: 448-464. [24] 寇志伟, 曹慧亮, 石云波, 等. 电容式环形微机电振动陀螺的设计[J]. 光学精密工程, 2019, 27(4): 842-848. KOU Zhi-wei, CAO Hui-liang, SHI Yun-bo, et al. Development of capacitive MEMS vibrating ring gyroscope[J]. Optics and Precision Engineering, 2019, 27(4): 842-848. [25] Brown T G. Harsh military environments and microelectromechanical(MEMS) devices[C]. Proceedings of IEEE Sensors, 2003: 753-760. [26] Myers D R, Cheng K B, Jamshidi B, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high g-shock environments[J]. Journal of Micro/Nanolithography, MEMS and MOEMS, 2009, 8(2): 021116. [27] Trusov A A, Schofield A R, Shkel A M. Micromachined tuning fork gyroscopes with ultra-high sensitivity and shock rejection[P]. US Patent: 8322213, 2012-12-04. [28] Schofield A R, Trusov A A, Shkel A M. Multi-degree of freedom tuning fork gyroscope demonstrating shock rejec-tion[C]. Proceedings of IEEE Sensors, 2007:120-123. [29] ST Microelectronics. LSM9DS1 INEMO inertial module product datasheet[EB/OL]. http://www.st.com. [30] Invensense. MPU-9255 product specification[EB/OL]. http://www.invensense.com. [31] Pryputniewicz R J. Survivability of MEMS packages at high-g loads[J]. International Journal of Optomechatro-nics, 2014, 8(4): 391-399. [32] Karnick D, Ballas G, Koland L, et al. Honeywell gun-hard inertial measurement unit(IMU) development[C]. Position, Location and Navigation Symposium, 2004: 49-55. [33] Karnick D, Troske T, Secord M, et al. Honeywell gun-hard inertial measurement unit(IMU) development[C]. Proceedings of the Institute of Navigation, National Technical Meeting, 2007: 718-724. [34] Sheard K, Scaysbrook I W, Cox D. MEMS sensor and integrated navigation technology for precision guidance[C]. Position, Location and Navigation Symposium, 2008: 1145-1151. [35] Chaumet B, Leverrier B, Rougeot C, et al. A new Silicon tuning fork gyroscope for aerospace applications[C]. Syposium Gyro Technology, 2009. [36] Dellea S, Giacci F, Rey P, et al. Reliability of gyroscopes based on piezoresistive nano-gauges against shock and free-drop tests[C]. Proceedings of the 29th IEEE International Conference on Micro Electro Mechanical Systems, 2016: 255-258. [37] Yoon S J, Park U, Rhim J W, et al. Tactical grade MEMS vibrating ring gyroscope with high shock reliability[J]. Microelectronic Engineering, 2015, 142: 22-29. [38] Zhou J, Jiang T, Jiao J W, et al. Design and fabrication of a micromachined gyroscope with high shock resistance[J]. Microsystem Technologies, 2014, 20(1): 137-144. [39] Mao X, Ming L, Liu Y, et al. A kind of shock resistance method on Silicon micro-machined gyroscope[C]. Proceedings of the IEEE International Conference on Information Acquisition, 2006: 101-105. [40] 刘宇. 无驱动结构微机械陀螺仪设计与制作关键技术研究[D]. 北京邮电大学, 2014. LIU Yu. Key techniques of design and manufacture for non-driven Silicon micromechanical gyroscope[D]. Beijing University of Posts and Telecommunications, 2014. [41] Lu Y P, Wu X S, Zhang W P, et al. Optimization and analysis of novel piezoelectric solid micro-gyroscope with high resistance to shock[J]. Microsystem Technologies, 2010, 16(4): 571-584. [42] Gao Y, Huang L B, Ding X K, et al. Design and implementation of a dual-mass MEMS gyroscope with high shock resistance[J]. Sensors, 2018, 18(4): 1037. [43] Liu Y, Lu Y L, Du X P, et al. Analysis of high shocking resistance of an improved node-plane supporting vibration beam gyroscope[J]. International Journal of Digital Content Technology and Its Applications, 2012, 6(9): 319-328. [44] 陈艳, 孟丽娜. 石英微机械陀螺封装抗高g值过载有限元分析[J]. 仪表技术与传感器, 2009(z1): 50-52. CHEN Yan, MENG Li-na. Finite element analysis of quartz MEMS gyroscope encapsulation in high g shock[J]. Instrument Technique and Sensor, 2009(z1): 50-52. [45] Chen L, Chen D Y, Wang J B. The design and analysis of a robust micro-machined vibrating ring gyroscope[C]. International Conference on Optical Instruments and Technology: MEMS/NEMS Technology and Applications, 2009. [46] Chen D Y, Zhang M, Wang J B. An electrostatically actuated micromachined vibrating ring gyroscope with highly symmetric support beams[C]. Proceedings of IEEE Sensors, 2010: 860-863. [47] Kou Z W, Cao H L, Shi Y B, et al. Structure design and simulation of MEMS vibrating ring gyroscope[J]. Journal of Measurement Science and Instrumentation, 2016, 7(1):78-83. [48] Kou Z W, Liu J, Cao H L, et al. A novel MEMS S-springs vibrating ring gyroscope with atmosphere package[J]. AIP Advances, 2017, 7(12): 125301. [49] 寇志伟, 曹慧亮, 刘俊, 等. MEMS环形振动陀螺结构设计与仿真分析[J]. 微纳电子技术, 2017, 54(7): 479-484+491. KOU Zhi-wei, CAO Hui-liang, LIU Jun, et al. Structure design and simulation analysis of a MEMS ring vibration gyroscope[J]. Micronanoelectronic Technology, 2017, 54(7): 479-484+491. [50] 刘洁瑜. 导弹惯性制导技术[M]. 西安: 西北工业大学出版社, 2010. LIU Jie-yu. Missile inertial guidance technology[M]. Xi'an: Northwestern Polytechnical University Press, 2010. [51] 毕小伟, 杜伟, 马跃飞, 等. 石英振梁加速度计研究现状及发展趋势[J]. 导航与控制, 2019, 18(4): 19-24. BI Xiao-wei, DU Wei, MA Yue-fei, et al. Research status and development trend of quartz vibrating beam accelerometer[J]. Navigation and Control, 2019, 18(4): 19-24. [52] 李圣怡, 刘宗林, 吴学忠. 微加速度计研究的进展[J]. 国防科技大学学报, 2004, 26(6): 34-37. LI Sheng-yi, LIU Zong-lin, WU Xue-zhong. Develo-pments of microaccelerometer research[J]. Journal of National University of Defense Technology, 2004, 26(6): 34-37. [53] 孙彬. 窄脉冲冲击加速度计校准装置与动态模型参数辨识方法研究[D]. 北京化工大学, 2016. SUN Bin. Research on the device of shock calibration of accelerometer based on narrow pulse and parameter identification method of dynamic model[D]. Beijing University of Chemical Technology, 2016. [54] 赵晓东. 高g值加速度计冲击校准理论与实验研究[D]. 中北大学, 2010. ZHAO Xiao-dong. Theoretical and experimental study on the shock calibration for high-g accelerometer[D]. North University of China, 2010. [55] Wen F, Shi Y B, Ren Y F. Design and test of high-g MEMS accelerometer[J]. Advanced Materials Research, 2013, 677: 85-89. [56] Edalatfar F, Yaghootkar B, Qureshi A Q A, et al. Design, fabrication and characterization of a high performance MEMS accelerometer[C]. Proceedings of IEEE Sensors, 2016. [57] Narasimhan V, Li H, Miao J M. Micromachined high-g accelerometers: a review[J]. Journal of Micromechanics and Microengineering, 2015, 25 (3): 033001. [58] Endevco. 7270A product datasheet[EB/OL]. http://www.endevco.com. [59] Davis B S, Denison T, Kaung J. A monolithic high-g SOI-MEMS accelerometer for measuring projectile launch and flight accelerations[J]. Shock and Vibration, 2006, 13(2): 127-135. [60] PCB Piezotronics[EB/OL]. http://www.pcb.com. [61] Bae K M, Lee J M, Kwon K B, et al. High-shock Silicon accelerometer with suspended piezoresistive sensing bridges[J]. Journal of Mechanical Science and Techno-logy, 2014, 28(4): 1449-1454. [62] Lee J M, Jang C U, Choi C J, et al. High-shock Silicon accelerometer with a plate spring[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(5): 637-644. [63] Okojie R S, Atwell A R, Kornegay K T, et al. Design considerations for bulk micromachined 6H-SiC high-G piezoresistive accelerometers[C]. Proceedings of the 15th IEEE International Conference on Micro Electro Mechani-cal Systems, 2002: 618-622. [64] Kuells R, Nau S, Salk M, et al. Novel piezoresistive high-g accelerometer geometry with very high sensitivity-bandwidth product[J]. Sensors and Actuators A: Physi-cal, 2012,182: 41-48. [65] Davies B R, Barron C C, Montague S, et al. High-G MEMS integrated accelerometer[C]. Proceedings of the SPIE, 1997, 3046: 52-62. [66] 董健, 李昕欣, 王跃林, 等. 曲面过载保护的新型高g值冲击硅微机械加速度传感器的设计[J]. 机械强度, 2003, 25(2): 148-150+214. DONG Jian, LI Xin-xin, WANG Yue-lin, et al. Design of novel Silicon micromachined high g shock accelerometer with curved over-range stop protection[J].Journal of Mechanical Strength, 2003, 25(2): 148-150+214. [67] 肖咸盛, 卞玉民. 一种高g值压阻式加速度传感器[J]. 微纳电子技术, 2017, 54(4): 261-267+284. XIAO Xian-sheng, BIAN Yu-min. A high-g piezoresistive accelerometer[J]. Micronanoelectronic Technology, 2017, 54(4): 261-267+284. [68] Zhang Z H, Shi Z G, Yang Z, et al. Design, simulation and fabrication of triaxial MEMS high shock accelerometer[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 2952-2957. [69] Zhao Y L, Li X B, Liang J, et al. Design, fabrication and experiment of a MEMS piezoresistive high-g accelerometer[J]. Journal of Mechanical Science and Technolo-gy, 2013, 27(3): 831-836. [70] 许高斌, 汪祖民, 陈兴. SOI特种高g值MEMS加速度计设计与分析[J]. 电子测量与仪器学报, 2010, 24(6): 561-568. XU Gao-bin, WANG Zu-min, CHEN Xing. Design and analysis of SOI special high-g MEMS accelerometer[J]. Journal of Electronic Measurement and Instrument, 2010, 24(6): 561-568. [71] Liu F, Gao S Q, Niu S H, et al. Optimal design of high-g MEMS piezoresistive accelerometer based on Timoshenko beam theory[J]. Microsystem Technologies, 2017, 24(1): 855-867. |
[1] | 孙文利, 纪斌, 刘汝婧, 郝磊磊, 郝永勤, 谭映戈. 动压气浮陀螺电机技术发展综述[J]. 导航与控制, 2021, 20(5): 26-37. |
[2] | 佟诚德, 葛晨, 郭家旭, 郎杰文, 王明峤, 郑萍. 基于改进型离散滑模观测器的表贴式永磁同步电机无位置传感器控制[J]. 导航与控制, 2021, 20(5): 71-79. |
[3] | 武紫玉, 黄元峰, 王海峰, 李旺. 基于磁链函数的BLDCM无位置传感器控制方法研究[J]. 导航与控制, 2021, 20(5): 80-88. |
[4] | 翁聪, 周明磊, 游小杰, 郝瑞祥. 低开关频率下基于MRAS的永磁同步电机无位置传感器控制延时分析[J]. 导航与控制, 2021, 20(5): 105-112. |
[5] | 张浩, 何汉辉, 肖定邦, 曾承志, 吴学忠. 微机电系统陀螺仪单层隔热槽结构优化设计[J]. 导航与控制, 2021, 20(5): 148-156. |
[6] | 阮驰, 张昌昌, 尹飞, 宋丽君, 段启航, 胡强, 高峰. 光纤光子纠缠增强陀螺的现状与认知[J]. 导航与控制, 2021, 20(4): 9-23. |
[7] | 伦华江, 徐枫, 黄喆, 许东旭, 张晓日. 基于惯性/航迹推测的煤矿掘锚机组合导航方法[J]. 导航与控制, 2021, 20(4): 33-40. |
[8] | 饶国像, 周元, 杨晓莺. 基于位置观测量的光纤陀螺惯导系泊条件自标定方法[J]. 导航与控制, 2021, 20(4): 49-58. |
[9] | 冯军, 张卫平, 刘朝阳, 谷留涛. 内S形柔性梁多环谐振陀螺热弹性阻尼分析[J]. 导航与控制, 2021, 20(4): 66-72. |
[10] | 杜剑, 张阳, 李军朔, 冯东棉, 王文一. 高精度石英挠性加速度计力矩器磁路仿真分析[J]. 导航与控制, 2021, 20(4): 80-86. |
[11] | 张天, 王强, 牛海涛, 靳舒馨. 基于微惯性技术的人体头部运动姿态测量[J]. 导航与控制, 2021, 20(4): 96-100. |
[12] | 郭航, 吴文启, 王茂松, 崔加瑞. 基于ST-EKF与滤波增益约束的加速度计微g级标定[J]. 导航与控制, 2021, 20(4): 108-117. |
[13] | 刘骅锋, 焦世民, 涂良成. 国外光力学加速度计研究现状及发展趋势[J]. 导航与控制, 2021, 20(3): 1-8. |
[14] | 罗子岩, 陈帅, 王国栋, 赵海飞, 马永犇. 多源融合导航系统的因子图算法综述[J]. 导航与控制, 2021, 20(3): 9-16. |
[15] | 于向怀, 向政, 孟祥涛. 基于Mahony算法的游泳运动姿态测量快速对准算法[J]. 导航与控制, 2021, 20(3): 17-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||