[1] de Broglie L. Sur la dynamique du quantum de la lumière et les interferences[J]. Comptes Rendus, 1924, 179: 1039-1041. [2] Ramsey N F. A molecular beam resonance method with separated oscillating fields[J]. Physical Review, 1950, 78(6): 695-699. [3] Berg P, Abend S, Tackmann G, et al. Composite-light-pulse technique for high-precision atom interferometry[J]. Physical Review Letters, 2015, 114(6): 063002. [4] Lévèque T, Gauguet A, Michaud F, et al. Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique[J]. Physical Review Letters, 2009, 103(8): 080405. [5] Dutta I, Savoie D, Fang B, et al. Continuous cold-atom inertial sensor with 1nrad/sec rotation stability[J]. Physical Review Letters, 2016, 116(18): 183003. [6] McGuinness H J, Rakholia A V, Biedermann G W. High data-rate atom interferometer for measuring acceleration[J]. Applied Physics Letters, 2012, 100(1): 011106. [7] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 2006, 97(24): 240801. [8] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry[J]. Physical Review Letters, 2011, 107(13): 133001. [9] Yao Z W, Lu S B, Li R B, et al. Continuous dynamic rotation measurements using a compact cold atom gyroscope[J]. Chinese Physics Letters, 2016, 33(8): 083701. [10] Xue H B, Feng Y Y, Chen S, et al. A continuous cold atomic beam interferometer[J]. Journal of Applied Physics, 2015, 117(9): 094901. [11] Zhou M K, Hu Z K, Duan X C, et al. Precisely mapping the magnetic field gradient in vacuum with an atom interferometer[J]. Physical Review A, 2010, 82(6): 061602. [12] Hu Z K, Duan X C, Zhou M K, et al. Simultaneous differential measurement of a magnetic-field gradient by atom interferometry using double fountains[J]. Physical Review A, 2011, 84(1): 013620. [13] Kasevich M A, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 1991, 67(2): 181-184. [14] Hohensee M A, Chu S, Peters A, et al. Equivalence principle and gravitational redshift[J]. Physical Review Letters, 2011, 106(15): 151102. [15] Peters A, Chung K Y, Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61. [16] Lemonde P, Santarelli G, Laurent P, et al. The sensitivity function: a new tool for the evaluation of frequency shifts in atomic spectroscopy[C]. IEEE Interna-tional Frequency Contral Symposium, 1998: 110-115. [17] Cheinet P, Canuel B, Pereira Dos Santos F, et al. Measurement of the sensitivity function in time-domain atomic interferometer[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(6): 1141-1148. [18] Metcalf H J, van der Straten P. Laser cooling and trapping of atoms[J]. Journal of the Optical Society of America B, 2003, 20(5): 887-908. [19] 王义遒. 原子的激光冷却与陷俘[M]. 北京: 北京大学出版社, 2007. WANG Yi-qiu. Laser cooling and capture of atomic[M]. Beijing: Peking University Press, 2007. [20] Berman P R. Atom interferometry[M]. London: Acade-mic Press, 1997. [21] Scully M O, Zubairy M S. Quantum optics[M]. Cambridge: Cambridge University Press, 1997. |