[1] 李姗姗. 水下重力辅助惯性导航的理论与方法研究[D]. 解放军信息工程大学, 2010. LI Shan-shan. Research on the theory and method of underwater gravity-aided inertial navigation[D]. PLA Information Engineering University, 2010. [2] 杨峻巍. 水下航行器导航及数据融合技术研究[D]. 哈尔滨工程大学, 2012. YANG Jun-wei. Research on navigation and data fusion technology for autonomous underwater vehicle[D]. Harbin Engineering University, 2012. [3] Hegrenaes Ø, Hallingstad O. Model-aided INS with sea current estimation for robust underwater navigation[J]. IEEE Journal of Oceanic Engineering, 2011, 36(2): 316-337. [4] 董翠军. 水下重力场辅助惯性导航匹配算法与适配区选择研究[D]. 武汉大学, 2017. DONG Cui-jun. Research on matching algorithm and selection of suitable matching area for underwater gravity-aided inertial navigation system[D]. Wuhan Univer-sity, 2017. [5] Wu L, Wang H B, Chai H, et al. Performance evaluation and analysis for gravity matching aided navigation[J]. Sensors, 2017, 17(4): 769. [6] 马越原. 重力匹配辅助水下导航的若干问题研究[D]. 解放军信息工程大学, 2017. MA Yue-yuan. Research on problems of underwater aided inertial navigation[D]. PLA Information Engineering University, 2017. [7] 付梦印, 刘飞, 袁书明, 等. 水下惯性/重力匹配自主导航综述[J]. 水下无人系统学报, 2017, 25(1): 31-43. FU Meng-yin, LIU Fei, YUAN Shu-ming, et al. Review of undersea autonomous inertial-gravity matching naviga-tion[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 31-43. [8] 黄玉龙, 张勇刚, 赵玉新. 自主水下航行器导航方法综述[J]. 水下无人系统学报, 2019, 27(3): 232-253. HUANG Yu-long, ZHANG Yong-gang, ZHAO Yu-xin. Review of autonomous undersea vehicle navigation methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 232-253. [9] Wang B, Zhu Y W, Deng Z H, et al. The gravity matching area selection criteria for underwater gravity aided navigation application based on the comprehensive characteristic parameter[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2935-2943. [10] 汪凤林, 蔡体菁, 王东霞. 惯性/重力匹配组合导航系统可观测性研究[J]. 安徽大学学报(自然科学版), 2008, 32(6): 27-31. WANG Feng-lin, CAI Ti-jing, WANG Dong-xia. Inertial/gravity matching integrated navigation system[J]. Journal of Anhui University (Natural Science Edition), 2008, 32(6): 27-31. [11] Wang H B, Wu L, Chai H, et al. Locationaccuracy of INS/gravity-integrated navigation system on the basis of ocean experiment and simulation[J]. Sensors, 2017, 17(12): 2961. [12] 徐遵义, 晏磊, 宁书年, 等. 海洋重力辅助导航的研究现状与发展[J]. 地球物理学进展, 2007, 22(1): 104-111. XU Zun-yi, YAN Lei, NING Shu-nian, et al. Situation and development of marine gravity aided navigation system[J]. Progress in Geophysics, 2007, 22(1): 104-111. [13] 程力, 蔡体菁, 夏冰. 重力辅助惯性导航系统中的一种新的相关匹配算法[J]. 仪器仪表学报, 2006, 27(S3): 2236-2236. CHENG Li, CAI Ti-jing, XIA Bing. Correlative matching algorithm of gravity aided inertial navigation system[J]. Chinese Journal of Scientific Instrument, 2006, 27(S3): 2236-2236. [14] Madden P. Passiveautonomous navigation for exploration, defense: using gravity to aid INS on UUVs[J]. Sea Technology, 2017, 58(6): 37-40. [15] 姚剑奇. 水下重力辅助导航定位方法研究[D].哈尔滨工程大学, 2015. YAO Jian-qi. Research on the method of underwater gravity-aided navigation and positioning[D]. Harbin Enginee-ring University, 2015. [16] 邓志红, 孙亮, 付梦印, 等. 基于惯导信息的地图匹配算法[J]. 哈尔滨工程大学学报, 2017, 38(8):1268-1272. DENG Zhi-hong, SUN Liang, FU Meng-yin, et al. New map-matching algorithm based on inertial navigation system[J]. Journal of Harbin Engineering University, 2017, 38(8): 1268-1272. [17] 白文平, 王志刚. ICCP重力匹配辅助导航算法研究及改进[J]. 计算机仿真, 2013, 30(6): 15-19+89. BAI Wen-ping, WANG Zhi-gang. Researching and impro-ving of ICCP algorithm for gravity aided inertial navigation[J]. Computer Simulation, 2013, 30(6): 15-19+89. [18] 于力. 水下运载体重力匹配算法研究[D]. 北京理工大学, 2016. YU Li. Research of underwater vehicle gravity matching algorithm[D]. Beijing Institute of Technology, 2016. [19] 蒋东方, 童余德, 边少锋, 等. ICCP重力匹配算法在局部连续背景场中的实现[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1203-1206. JIANG Dong-fang, TONG Yu-de, BIAN Shao-feng, et al. The study on ICCP algorithm for gravity matching based on local continuous field[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1203-1206. [20] Wang B, Zhou M L, Deng Z H, et al. Sum vector-difference-based matching area selection method for underwater gravity-aided navigation[J]. IEEE Access, 2019, 7: 123616-123624. [21] 闫利, 崔晨风, 吴华玲. 基于TERCOM算法的重力匹配[J]. 武汉大学学报(信息科学版), 2009, 34(3): 261-264. YAN Li, CUI Chen-feng, WU Hua-ling. A gravity matching algorithm based on TERCOM[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 261-264. [22] 代志国. 基于SITAN算法的水下地磁辅助惯性导航原理及仿真研究[D]. 哈尔滨工程大学, 2015. DAI Zhi-guo. The principle and simulation of underwater geomagnetic aided inertial navigation based on SITAN algorithm[D]. Harbin Engineering University, 2015. [23] 李颖. 基于等值线的重力/惯性匹配导航算法的研究与实现[D]. 哈尔滨工程大学, 2011. LI Ying. Research and realization on integrated gravity/inertial navigation algorithm based on the isoline[D]. Harbin Engineering University, 2011. [24] Wang B, Yu L, Deng Z H, et al. A particle filter-based matching algorithm with gravity sample vector for under-water gravity aided navigation[J]. IEEE/ASME Transac-tion on Mechatronics, 2016, 21(3): 1399-1408. [25] 武虎子, 南英, 付莹珍. 辅助惯性导航系统的方法和算法发展[J]. 现代防御技术, 2008, 36(4): 62-67. WU Hu-zi, NAN Ying, FU Ying-zhen. The development of aided algorithm and methods in inertial navigation system[J]. Modern Defence Technology, 2008, 36(4): 62-67. [26] 黄鹏, 成怡. 改进的BP神经网络算法在航迹匹配中的应用[J]. 计算机工程, 2011, 37(11): 218-219+222. HUANG Peng, CHENG Yi. Application of improved back propagation neural network algorithm in track matching[J]. Computer Engineering, 2011, 37(11): 218-219+222. [27] 程力, 蔡体菁. 基于模式识别神经网络的重力匹配算法[J]. 东南大学学报(自然科学版), 2007, 37(5): 839-843. CHENG Li, CAI Ti-jing. Gravity matching algorithm based on pattern recognition neural network[J]. Journal of Southeast University (Natural Science Edition), 2007, 37(5): 839-843. [28] 程力, 蔡体菁. 一种模式识别神经网络重力匹配算法[J]. 中国惯性技术学报, 2007, 15(4): 418-422. CHENG Li, CAI Ti-jing. Gravity matching algorithm using pattern recognition neural network[J]. Journal of Chinese Inertial Technology, 2007, 15(4): 418-422. [29] 程力, 蔡体菁. 基于支持向量机的重力匹配算法[J]. 系统仿真学报, 2008, 20(21): 5953-5956+5962. CHENG Li, CAI Ti-jing. Gravity matching algorithm based on support vector machine[J]. Journal of System Simulation, 2008, (21): 5953-5956+5962. [30] Gao W, Zhao B, Zhou G T, et al. Improved artificial bee colony algorithm based gravity matching navigation method[J]. Sensors, 2014, 14(7): 12968-12989. [31] 王胜平, 张红梅, 赵建虎, 等. 利用TERCOM与ICCP进行联合地磁匹配导航[J]. 武汉大学学报(信息科学版), 2011, 36(10): 1209-1212. WANG Sheng-ping, ZHANG Hong-mei, ZHAO Jian-hu, et al. Marine geomagnetic navigation technology based on integration of TERCOM and ICCP[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1209-1212. [32] 张立, 杨惠珍. 基于 ICCP 和 TERCOM 的水下地形匹配组合算法研究[J]. 弹箭与制导学报, 2008, 28(3): 230-232. ZHANG Li, YANG Hui-zhen. Research on assembled underwater terrain matching algorithm based on ICCP and TERCOM[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 230-232. [33] Wei E H, Dong C J, Yang Y L, et al. Arobust solution of integrated SITAN with TERCOM algorithm: weight-reducing iteration technique for underwater vehicles’ gravity-aided inertial navigation system[J]. Navigation: Journal of the Institute of Navigation, 2017, 64(1): 111-122. [34] Zhao L,Gao N, Huang B Q, et al. A novel terrain-aided navigation algorithm combined with the TERCOM algorithm and particle filter[J]. IEEE Sensors Journal, 2015, 15(2): 1124-1131. [35] Zhu Z S, Guo Y Y, Yang Z L. Study oninitial gravity map matching technique based on triangle constraint model[J]. The Journal of Navigation, 2016, 69(2): 353-372. [36] Wang H B, Wu L, Chai H, et al. Characteristics of marine gravity anomaly reference maps and accuracy analysis of gravity matching-aided navigation[J]. Sensors, 2017, 17(8): 1851. [37] 李钊伟, 郑伟, 吴凡, 等. 基于新型分层邻域阈值搜索法提高水下潜器重力匹配导航的匹配效率[J]. 地球物理学报, 2019, 62(7): 2405-2416. LI Zhao-wei, ZHENG Wei, WU Fan, et al. Improving the matching efficiency of underwater gravity matching navigation based on a new hierarchical neighborhood threshold method[J]. Chinese Journal of Geophysics, 2019, 62(7): 2405-2416. [38] Wang B, Zhu J W, Deng Z H, et al. A characteristic parameter matching algorithm for gravity-aided navigation of underwater vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1203-1212. [39] Dai T, Miao L J, Shao H J, et al. Solvinggravity anomaly matching problem under large initial errors in gravity aided navigation by using an affine transformation based artificial bee colony algorithm[J]. Frontiers in Neurorobotics, 2019, 13: 19. [40] Santana-Diaz E,Adey R. Predicting the coating condition on ships using ICCP system data[J]. International Journal for Numerical Methods in Engineering, 2005, 62(6): 727-746. [41] 童余德, 边少峰, 蒋东方, 等. 实时ICCP 算法重力匹配仿真[J]. 中国惯性技术学报, 2011, 19(3): 340-343. TONG Yu-de, BIAN Shao-feng, JIANG Dong-fang, et al. Gravity matching simulation of real-time ICCP algorithm[J]. Journal of Chinese Inertial Technology, 2011, 19(3): 340-343. [42] 王向磊, 苏牡丹, 刘培根, 等. 利用改进的ICCP算法辅助导航[J]. 测绘科学, 2013, 38(1): 36-39+50. WANG Xiang-lei, SU Mu-dan, LIU Pei-gen, et al. Application of improved ICCP algorithm in gravity matching aided navigation[J]. Science of Surveying and Mapping, 2013, 38(1): 36-39+50. [43] 蔡龙飞, 郑彤. 基于ICCP算法的重力匹配仿真[J]. 舰船电子工程, 2016, 36(12): 109-112. CAI Long-fei, ZHENG Tong. Gravity matching simulation of real-time ICCP algorithm[J]. Ship Electronic Engineering, 2016, 36(12): 109-112. [44] 侯慧娟. 惯性/重力组合导航匹配滤波算法的研究与实现[D]. 哈尔滨工程大学, 2009. HOU Hui-juan. Research and realization of match/filtering algorithm in inertial/gravity navigation system[D]. Harbin Engineering University, 2009. [45] Liu M Q, Wang B, Deng Z H, et al. Improved ICCP algorithm and its application in gravity matching aided inertial navigation system[C]. Proceedings of the 33rd Chinese Control Conference, 2014: 562-567. [46] Liu F M, Li F M, Lin N, et al. Gravity aided positioning based on real-time ICCP with optimized matching sequence length[J]. IEEE Access, 2019, 7: 97440-97456. [47] Yuan G N, Zhang H W, Yuan K F, et al. A combinational aided navigation algorithm based on terrain variance entropy and ICCP[C]. Proceedings of the 5th International Joint Conference on Computational Sciences and Optimization, 2012:835-838. [48] 吴凤贺, 张琦, 潘孟春, 等. 基于ICCP的地磁矢量匹配算法研究[J]. 中国测试, 2018, 44(2): 103-107. WU Feng-he, ZHANG Qi, PAN Meng-chun, et al. Study on geomagnetic vector matching algorithm based on ICCP[J]. China Measurement & Test, 2008, 44(2):103-107. [49] Han Y R, Wang B, Deng Z H, et al. A combined matching algorithm for underwater gravity aided navigation[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):233-241. [50] 许大欣, 王勇, 王虎彪, 等. 重力垂直梯度和重力异常辅助导航SITAN算法结果分析[J]. 大地测量与地球动力学, 2011, 31(1): 127-131. XU Da-xin, WANG Yong, WANG Hu-biao, et al. Results analysis of vertical gradient of gravity and gravity anomaly aided navigation with SITAN algorithm[J]. Journal of Geodesy and Geodynamics, 2011, 31(1): 127-131. [51] Han Y R, Wang B, Deng Z H, et al. A matching algorithm based on nonlinear filter and similarity transfor-mation for gravity aided underwater navigation[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 646-654. [52] Han Y R, Wang B, Deng Z H, et al. Point mass filter based matching algorithm in gravity aided underwater navigation[J]. Journal of Systems Engineering and Electro-nics, 2018, 29(1): 152-159. |