[1] 宁津生, 黄谟涛, 欧阳永忠, 等. 海空重力测量技术进展[J]. 海洋测绘, 2014, 34(3): 67-72+76. NING Jin-sheng, HUANG Mo-tao, OUYANG Yong-zhong, et al. Development of marine and airborne gravity measurement technologies[J]. Hydrographic Surveying and Charting, 2014, 34(3):67-72+76. [2] 熊盛青. 我国航空重磁勘探技术现状与发展趋势[J]. 地球物理学进展, 2009, 24(1): 113-117. XIONG Sheng-qing. The present situation and develop-ment of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 2009, 24(1): 113-117. [3] 许厚泽. 卫星重力研究:21世纪大地测量研究的新热点[J]. 测绘科学, 2001, 26(3): 1-3. XU Hou-ze. Satellite gravity missions—new hotpoint in geodesy[J]. Science of Surveying and Mapping,2001, 26(3): 1-3. [4] 黄谟涛, 刘敏, 吴太旗, 等. 海空重力测量关键技术指标体系论证与评估[J]. 测绘学报, 2018, 47(11): 1537-1548. HUANG Mo-tao, LIU Min, WU Tai-qi, et al. Research and evaluation on key technological target system for marine and airborne gravity surveys[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1537-1548. [5] 常国宾, 李胜全. 惯性技术视角下动态重力测量技术评述(一): 比力测量与载体动态的影响[J]. 海洋测绘, 2014, 34(3): 77-82. CHANG Guo-bin, LI Sheng-quan. Overview on dynamic gravimetry in the perspective of inertial technology, part I: specific force measuring and impact of dynamics[J]. Hydrographic Surveying and Charting, 2014, 34(3): 77-82. [6] 李建成. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉: 武汉大学出版社, 2003. LI Jian-cheng. Earth gravity field approximation theory and determination of China 2000 geoid[M]. Wuhan: Wuhan University Press, 2003. [7] 蔡劭琨. 航空重力矢量测量及误差分离方法研究[D]. 国防科学技术大学, 2014. CAI Shao-kun. The research about airborne vector gravimeter and methods of errors separation[D]. National University of Defense Technology, 2014. [8] Forsberg R, Olesen A V, Einarsson I. Airborne gravi-metry for geoid determination with Lacoste Romberg and Chekan gravimeters[J]. Gyroscopy and Navigation, 2015, 6(4): 265-270. [9] Verdun J, Klingelé E E. Airborne gravimetry using a strapped-down LaCoste and Romberg air/sea gravity meter system: a feasibility study[J]. Geophysical Prospecting, 2005, 53(1): 91-101. [10] Peters M F, Brozena J M. Methods to improve existing shipboard gravimeters for airborne gravimetry[C]. IAG Symposium on Airborne Gravity Field Determination, 1995. [11] Studinger M, Bell R, Frearson N. Comparison of AIRGrav and GT-1A airborne gravimeters for research applications[J]. Geophysics, 2008, 73(6): I51. [12] Ferguson S T, Hammada Y. Experiences with AIRGrav: results from a new airborne gravimeter[C]. International Association of Geodesy Symposia, 2000: 211-216. [13] 张昌达. 航空重力测量和航空重力梯度测量问题[J]. 工程地球物理学报, 2005, 2(4): 282-291. ZHANG Chang-da. On the subject of airborne gravimetry and airborne gravity gradiometry[J]. Chinese Journal of Engineering Geophysics, 2005, 2(4): 282-291. [14] Smoller Y L, Yurist S S, Golovan A A, et al. Using a multiantenna GPS receiver in the airborne gravimeter GT-2a for surveys in polar areas[J]. Gyroscopy and Navigation, 2015, 6(4): 299-304. [15] Ayres-Sampaio D, Deurloo R, Bos M S, et al. A comparison between three IMUs for strapdown airborne gravimetry[J]. Surveys in Geophysics, 2015, 36(4): 571-586. [16] 修睿, 郭刚, 薛正兵, 等. 海空重力仪的技术现状及新应用[J]. 导航与控制, 2019, 18(1): 35-43. XIU Rui, GUO Gang, XUE Zheng-bing, et al. Technical current situation and new application of marine/aviation gravimeter[J]. Navigation and Control, 2019, 18(1): 35-43. [17] 李东明, 郭刚, 薛正兵, 等. 激光捷联惯导车载重力测量试验[J]. 导航与控制, 2013, 12(4): 75-78+74. LI Dong-ming, GUO Gang, XUE Zheng-bing, et al. Gravimetry tests of laser strapdown INS on ground-vehicle[J]. Navigation and Control, 2013, 12(4): 75-78+74. [18] 张开东. 基于SINS/DGPS的航空重力测量方法研究[D].国防科学技术大学, 2007. ZHANG Kai-dong. Research on the methods of airborne gravimetry based on SINS/DGPS[D]. National University of Defense Technology, 2007. [19] 吴美平, 张开东. 基于捷联惯导系统/差分全球定位系统的航空重力测量技术[J]. 科技导报, 2007, 25(17): 74-80. WU Mei-ping, ZHANG Kai-dong. Technology of airborne gravimetry based on SINS/DGPS[J]. Science & Tech-nology Review, 2007, 25(17): 74-80. [20] 吴美平, 张开东, 曹聚亮, 等. 新型高精度航空重力勘察系统研制[J]. 科技资讯, 2016, 14(12): 175. WU Mei-ping, ZHANG Kai-dong, CAO Ju-liang, et al. Developing of the new type high accuracy airborne gravimetry system[J]. Science & Technology Information, 2016, 14(12):175. [21] 郭志宏, 熊盛青, 周坚鑫, 等. 航空重力重复线测试数据质量评价方法研究[J]. 地球物理学报, 2008, 51(5): 1538-1543. GUO Zhi-hong, XIONG Sheng-qing, ZHOU Jian-xin, et al. The research on quality evaluation method of test repeat lines in airborne gravity survey[J]. Chinese Journal of Geophysics, 2008, 51(5): 1538-1543. [22] 胡平华, 赵明, 黄鹤, 等. 航空/海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017, 4(4): 10-19. HU Ping-hua, ZHAO Ming, HUANG He, et al. Review on the development of airborne/marine gravimetry instruments[J]. Navigation Positioning and Timing, 2017, 4(4): 10-19. [23] 梁星辉, 柳林涛, 吴鹏飞, 等. 顾及误差频谱特性的CHZ重力仪航空应用研究[J]. 测绘学报, 2013, 42(5): 633-639. LIANG Xing-hui, LIU Lin-tao, WU Peng-fei, et al. Study on CHZ gravimeter applied in airborne gravimetry involving error spectrum characteristic[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 633-639. [24] 张子山. GDP-1型重力仪船载试验介绍[C]. 惯性技术发展动态发展方向研讨会, 2014: 65-69. ZHANG Zi-shan. Introduction to the shipboard test of GDP-1 gravimeter[C]. Seminar on Dynamic Development Direction of Inertial Technology, 2014: 65-69. [25] 于瑞航, 蔡劭琨, 吴美平, 等. 基于SINS/GNSS的捷联式车载重力测量研究[J]. 物探与化探, 2015, 39(S1): 67-71. YU Rui-hang, CAI Shao-kun, WU Mei-ping, et al. A study of SINS/GNSS strapdown ground vehicle gravimetry test[J]. Geophysical and Geochemical Exploration, 2015, 39(S1): 67-71. [26] 黄谟涛, 陆秀平, 欧阳永忠, 等. 海空重力测量技术体系构建与研究若干进展(一): 需求论证设计与仪器性能评估技术[J]. 海洋测绘, 2018, 38(4): 11-15. HUANG Mo-tao, LU Xiu-ping, OUYANG Yong-zhong, et al. Progress in development and study of technical system of marine and airborne gravity surveys, part I: requirement investigation, survey design and evaluation of instrument performance[J]. Hydrographic Surveying and Charting, 2018, 38(4): 11-15. [27] 刘敏, 黄谟涛, 欧阳永忠, 等. 海空重力测量及应用技术研究进展与展望(二): 传感器与测量规划设计技术[J]. 海洋测绘, 2017, 37(3): 1-11. LIU Min, HUANG Mo-tao, OUYANG Yong-zhong, et al. Development and prospect of air-sea gravity survey and its applications, part II: sensor, plan and design of survey[J]. Hydrographic Surveying and Charting, 2017, 37(3): 1-11. [28] Huang Y M, Olesen A V, Wu M P, et al. SGA-WZ: a new strapdown airborne gravimeter[J]. Sensors, 2012, 12(7):9336-9348. [29] Cai S K, Tie J B, Zhang K D, et al. Marine gravimetry using the strapdown gravimeter SGA-WZ[J]. Marine Geophysical Research, 2017, 38(4): 325-340. [30] Yu R H, Cai S K, Wu M P, et al. An SINS/GNSS ground vehicle gravimetry test based on SGA-WZ02[J]. Sensors, 2015, 15(9): 23477-23495. [31] Wang M H, Wu M P, Cao J L, et al. Strapdown airborne gravimetry quality assessment method based on single survey line data: a study by SGA-WZ02 gravimeter[J]. Sensors, 2018, 18(2): 360. [32] Jekeli C. Accuracy requirements in position and attitude for airborne vector gravimetry and gradiometry[J]. Gyroscopy and Navigation, 2011, 2(3): 164-169. [33] Titterton D H. 捷联惯性导航技术(第2版)[M]. 北京: 国防工业出版社, 2007. Titterton D H. Strapdown inertial navigation technology(2nd)[M]. Beijing: National Defense Industry Press, 2007. |