[1] 王桂芝, 沈卫. 国外自主地面无人系统发展综述[J]. 机器人技术与应用, 2017(6): 23-25. WANG Gui-zhi, SHEN Wei. Overview of the development of foreign autonomous ground unmanned systems[J]. Robot Technique and Application, 2017(6): 23-25. [2] Liu X, Dai B. The latest status and development trends of military unmanned ground vehicles[C]. Chinese Automa-tion Congress, 2013: 533-537. [3] Farooq W, Ali Khan M, Rehman S. AMVR: a multicast routing protocol for autonomous military vehicles communication in VANET[C]. 14th International Bhurban Confer-ence on Applied Sciences and Technology, 2017: 699-706. [4] 白亮, 严恭敏, 朱启举, 等. 里程计辅助的捷联惯导系统研究[J]. 弹箭与制导学报, 2013, 33(6): 16-18. BAI Liang, YAN Gong-min, ZHU Qi-ju, et al. SINS/OD integrated navigation system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33 (6): 16-18. [5] Hu J, Cheng X H. A new in-motion initial alignment for land-vehicle SINS/OD integrated system[C]. IEEE/ION Position, Location and Navigation Symposium, 2014: 407-412. [6] 马智渊, 石志勇, 王志伟. 捷联惯导/里程计组合导航技术[J].火力与指挥控制, 2017, 42(2): 183-186. MA Zhi-yuan, SHI Zhi-yong, WANG Zhi-wei. Strapdown inertial/odometer integrated navigation technology[J]. Fire Control & Command Control, 2017, 42 (2): 183-186. [7] 付强文, 秦永元, 周琪. 改进量测的车载捷联惯导/里程计组合导航算法[J].测控技术, 2013, 32(7): 134-137+141. FU Qiang-wen, QIN Yong-yuan, ZHOU Qi. Improved vehicular SINS/odometer integrated navigation algorithm[J]. Measurement & Control Technology, 2013, 32 (7): 134-137+141. [8] 缪玲娟, 李春明, 郭振西, 等. 陆用捷联惯导系统/里程计自主式组合导航技术[J]. 北京理工大学学报, 2004, 24(9): 808-811. MIAO Ling-juan, LI Chun-ming, GUO Zhen-xi, et al. Independently integrated navigation system of SINS and distance-transfer-unit for land vehicles[J]. Transactions of Beijing Institute of Technology, 2004, 24(9): 808-811. [9] Jeanroy A, Grosset G, Goudon J C, et al. HRG by Sagem from laboratory to mass production[C]. IEEE Interna-tional Symposium on Inertial Sensors and Systems, 2016:1-4. [10] Lenoble A, Rouilleault T. PRIMUS: SWAP-oriented IMUs for multiple applications[C]. DGON Intertial Senso-rs and Systems, 2016: 1-16. [11] Meyer D, Rozelle D. Milli-HRG inertial navigation system[J]. Gyroscopy and Navigation, 2012, 3(4): 227-234. [12] Leonard J, How J, Teller S, et al. A perception-driven autonomous urban vehicle[J]. Journal of Field Robotics, 2008, 25(10): 727-774. [13] Petrovskaya A, Thrun S. Model based vehicle detection and tracking for autonomous urban driving[J]. Autono-mous Robots, 2009, 26(2-3): 123-139. [14] Benson D. Interference benefits of a vector delay lock loop(VDLL) GPS receiver[C]. Proceedings of the 63rd Annual Meeting Institute of Navigation, 2007: 749-756. [15] Park D B, Shin D H, Oh S H, et al. Velocity aiding-based anti-jamming method for GPS adaptor kits[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 54(184): 130-136. [16] Soloviev A, Dickman T J. Deeply integrated GPS for indoor navigation[C]. International Conference on Indoor Positioning and Indoor Navigation, 2010: 1-9. [17] Kiese S, Langer M, Eckert M, et al. Discriminator weighting and performance of a deeply coupled GPS/INS system at low CN0[C]. Proceedings of the International Technical Meeting of The Institute of Navigation, 2001: 858-867. [18] Frontline Robotics keeps unmanned security vehicles on track with KVH fiber-optic gyros[J]. Military & Aerospace Electronics, 2009, 20(4):18. [19] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]. IEEE International Conference on Robotics & Automation, 2007: 3565-3572. [20] Huai Z, Huang G Q. Robocentric visual-inertial odometry[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018. [21] Sun K, Mohta K, Pfrommer B, et al. Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 965-972. [22] Paul M K, Wu K J, Hesch J A, et al. A comparative analysis of tightly-coupled monocular, binocular, and stereo VINS[C]. IEEE International Conference on Robo-tics and Automation, 2017: 165-172. [23] Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. International Journal of Robotics Research, 2015, 34(3): 314-334. [24] Von Stumberg L , Usenko V , Cremers D . Direct sparse visual-inertial odometry using dynamic marginalization[C]. IEEE International Conference on Robotics and Automa-tion, 2018: 2510-2517. [25] Mur-Artal R, Tardós J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262. [26] Bian J W, Li Z C, Wang N Y, et al. Unsupervised scale-consistent depth and ego-motion learning from monocular video[C]. 33rd Conference on Neural Information Proces-sing Systems, 2019. [27] Kuznietsov Y, Stückler J, Leibe B. Semi-supervised deep learning for monocular depth map prediction[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2017: 2215-2223. [28] Pilzer A, S Lathuilière, Xu D, et al. Progressive fusion for unsupervised binocular depth estimation using cycled network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2380-2395. [29] Zhou T H, Brown M, Snavely N, et al. Unsupervised learning of depth and ego-motion from video[C]. IEEE International Conference on Computer Vision and Pattern Recognition,2017: 6612-6619. [30] Tang J, Chen Y W, Niu X J, et al. LiDAR scan matching aided inertial navigation system in GNSS-denied environments[J]. Sensors, 2015, 15(7):16710-16728. [31] Lynen S, Achtelik M W, Weiss S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: 3923-3929. [32] Soloviev A, Bates D, Van Graas F. Tight coupling of laser scanner and inertial measurements for a fully autonomous relative navigation solution[J]. Navigation, 2007, 54(3): 189-205. [33] Hemann G, Singh S, Kaess M. Long-range GPS-denied aerial inertial navigation with LIDAR localization[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016, 2016: 1659-1666. [34] Bosse M, Zlot R. Continuous 3D scan-matching with a spinning 2D laser[C]. IEEE International Conference on Robotics and Automation, 2009: 4312-4319. [35] Park C, Moghadam P, Kim S, et al. Elastic LiDAR fusion: dense map-centric continuous-time SLAM[C]. IEEE International Conference on Robotics and Automa-tion, 2018:1206-1213. [36] Ye H Y, Chen Y Y, Liu M. Tightly coupled 3D Lidar inertial odometry and mapping[C]. International Conference on Robotics and Automation, 2019: 3144-3150. [37] 戴海发, 卞鸿巍, 马恒, 等. 全源定位与导航的统一理论框架构建[J]. 导航定位与授时, 2018, 5(6): 9-16. DAI Hai-fa, BIAN Hong-wei, MA Heng, et al. Unified theoretical framework construction of all source positioning and navigation[J]. Navigation Positioning and Timing, 2018, 5(6): 9:17 [38] Groves P D, Wang L, Walter D, et al. The four key challenges of advanced multisensor navigation and positioning[C]. IEEE/ION Position, Location and Navigation Symposium, 2014: 773-792. [39] Chiu H P, Zhou X S, Carlone L, et al. Constrained optimal selection for multi-sensor robot navigation using plug-and-play[C]. IEEE International Conference on Robotics and Automation, 2014: 663-670. [40] 许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 2017, 4(4): 1-9. XU Xiao-wei, LAI Ji-zhou, LYU Pin, et al. A literature review on the research status and progress of cooperative navigation technology for multiple UAVs[J]. Navigation Positioning and Timing, 2017, 4(4): 1-9. [41] STANAG 4586[EB/OL]. http://lockheedmartin. com/en-us/products/cdl-systems/stanag-4586.html. [42] Roumeliotis S I, Bekey G A. Distributed multirobot localization[J]. IEEE Transactions on Robotics and Automa-tion, 2002, 18(5):781-795. [43] 陶通, 黄亚楼, 苑晶, 等. 基于协助校正方法的多机器人主动同时定位与建图[J]. 模式识别与人工智能, 2012, 25(3): 534-543. TAO Tong, HUANG Ya-lou, YUAN Jing, et al. Multi-robot active simultaneous localization and mapping based on cooperative correction approach[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3): 534-543. [44] O' Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171-175. [45] 杜现礼. 鸽子隐花色素磁敏感机理研究[D]. 国防科学技术大学, 2014. DU Xian-li. The magnetoreception mechanism of cryptochrome 1 from domestic pigeons[D]. National University of Defense Technology, 2014. [46] 王丹, 彭丰林, 马麦宁, 等. IGRF 国际地磁参考场模型可视化研究[J]. 地震地磁观测与研究, 2009, 30(4): 7-11. WANG Dan, PENG Feng-lin, MA Mai-ning, et al. Virtualization research on IGRF 10(International Geomagnetic Reference Field) model[J]. Seismological and Geomagn-etic Observation and Research, 2009, 30(4): 7-11. [47] 陈冲. 地磁辅助惯性导航系统研究[D]. 哈尔滨工业大学, 2014. CHEN Chong. Research on geomagnetic aided inertial navigation system[D]. Harbin Institute of Technology, 2014. [48] Möller R, Maris M, Lambrinos D. A neural model of landmark navigation in insects[J]. Neurocomputing, 1999, 26-27: 801-808. [49] Thakoor S, Morookian J M, Chahl J S, et al. BEES: exploring Mars with bioinspired technologies[J]. Computer, 2004, 37(9): 38-47. [50] Higashi Y, Tokuami H, Kimura H. Robot navigation using polarized light sensor without crossed-analyzer[C]. 6th International Symposium on Advanced Science and Technology in Experimental Mechanics. 2011, 110. [51] Dupeyroux J, Serres J R, Viollet S. AntBot: a six-legged walking robot able to home like desert ants in outdoor environments[J]. Science Robotics, 2019, 4(27): eaau0307. |