[1] 王大轶, 黄翔宇. 深空探测自主导航与控制技术综述[J]. 空间控制技术与应用, 2009, 35(3): 6-12+43. WANG Da-yi, HUANG Xiang-yu. Survey of autonomous navigation and control for deep space exploration[J]. Aerospace Control and Application, 2009, 35(3): 6-12+43. [2] 王安国. 现代天文导航及其关键技术[J]. 电子学报, 2007, 35(12): 2347-2353. WANG An-guo. Modern celestial navigation and the key techniques[J]. Acta Electronica Sinica, 2007, 35(12): 2347-2353. [3] 朱圣英, 常晓华, 崔祜涛, 等. 基于视线矢量的深空自主导航算法研究[J]. 空间科学学报, 2011, 31(4): 534-540. ZHU Sheng-ying, CHANG Xiao-hua, CUI Hu-tao, et al. Research on autonomous navigation algorithm of deep space based on line-of-sight vector[J]. Chinese Journal of Space Science, 2011, 31(4): 534-540. [4] 张伟, 陈晓, 尤伟, 等. 光谱红移自主导航新方法[J]. 上海航天, 2013, 30(2): 32-33+38. ZHANG Wei, CHEN Xiao, YOU Wei, et al. New autonomous navigation method based on redshift[J]. Aerospace Shanghai, 2013, 30(2): 32-33+38. [5] Wang W, Fang B D, Zhang W. Deceleration options for a robotic interstellar spacecraft[C]. 64th International Astronautical Congress, 2013. [6] Chen X, Zhang W, Wang W. Preliminary research of Mars local navigation constellation[C]. 64th International Astronautical Congress, 2013. [7] 张伟. 空探测天文导航原理与方法[M]. 北京: 科学出版社, 2017. ZHANG Wei. Principle and method of celestial navigation in deep space exploration[M]. Beijing: Science Press, 2017. [8] 陈晓, 张伟, 彭玉明. 基于器间测量的火星进入过程实时高精度导航[J]. 航天返回与遥感, 2012, 33(6): 17-23. CHEN Xiao, ZHANG Wei, PENG Yu-ming. Mars entry real-time navigation based on orbiter tracking data[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6): 17-23. [9] 尤伟, 张伟, 马广富. 深空天文测速自主导航速度矢量合成误差传递分析[J]. 中国惯性技术学报, 2017, 25(3): 338-342. YOU Wei, ZHANG Wei, MA Guang-fu. Analysis on error propagation in velocity vector synthesis of deep-space celestial autonomous navigation based on radial velocity measurement[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 338-342. [10] 张伟, 黄庆龙, 陈晓. 基于天文测角测速组合的小行星探测器自主导航方法[J]. 中国科学: 物理学 力学 天文学, 2019, 49(8): 084510. ZHANG Wei, HUANG Qing-long, CHEN Xiao. Autonomous celestial navigation method of asteroid probe based on angle measurement and velocity measurement[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2019, 49(8): 084510. [11] Harlander J, Reynolds R J, Roesler F L. Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths[J]. The Astrophysical Journal, 1992, 396(2): 730-740. [12] Englert C R, Babcock D D, Harlander J M. Doppler asymmetric spatial heterodyne spectroscopy(DASH): concept and experimental demonstration[J]. Applied Optics, 2007, 46(29): 7297-7307. [13] 田玉龙, 王广君, 房建成, 等. 星光模拟的半物理仿真技术[J]. 中国航天, 2004(4): 25-26. TIAN Yu-long, WANG Guang-jun, FANG Jian-cheng, et al. A half-physics simulation method for navigation star-light[J]. Aerospace China, 2004(4): 25-26. [14] 全伟, 房建成. 天文导航系统半物理仿真研究[J]. 系统仿真学报, 2006, 18(2): 353-358. QUAN Wei, FANG Jian-cheng. Hardware in-the-loop simulation of celestial navigation system[J]. Journal of System Simulation, 2006, 18(2): 353-358. [15] 帅平, 陈绍龙, 吴一帆, 等. X射线脉冲星导航技术研究进展[J]. 空间科学学报, 2007, 27(2): 169-176. SHUAI Ping, CHEN Shao-long, WU Yi-fan, et al. Advance in X-ray pulsar navigation technology[J]. Chinese Journal of Space Science, 2007, 27(2): 169-176. [16] 康志伟, 徐星满, 刘劲, 等. 基于双测量模型的多普勒测速及其组合导航[J]. 宇航学报, 2017, 38(9): 964-970. KANG Zhi-wei, XU Xing-man, LIU Jin, et al. Doppler velocity measurement based on double measurement model and its integrated navigation[J]. Journal of Astronautics, 2017, 38(9): 964-970. [17] 周晨君. 基于天文观测的测速自主导航[D]. 哈尔滨工业大学, 2018. ZHOU Chen-jun. Speed-based autonnomous navigation based on astronomical observation[D].Harbin Institute of Technology, 2018. [18] 李葆华, 刘国良, 刘睿, 等. 天文导航中的星敏感器技术[J]. 光学精密工程, 2009, 17(7): 1615-1620. LI Bao-hua, LIU Guo-liang, LIU Rui, et al. Key techniques of star sensors for celestial navigation[J]. Optics and Precision Engineering, 2009, 17(7): 1615-1620. |