[1] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4): 7-18. YUAN Li, HUANG Huang. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application, 2019, 45(4): 7-18. [2] Lam Q M, Hunt T,Sanneman P, et al. Analysis and design of a fifteen state stellar inertial attitude determination system[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003. [3] Madden M. GeoEye-1, the world's highest resolution commercial satellite[C]. IEEE Conference on Lasers and Electro-Optics, 2009. [4] GeoEye-1[EB/OL]. http://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1. [5] WorldView-3[EB/OL]. http://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-3. [6] WorldView-4(formerly GeoEye-2) [EB/OL]. http://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-4. [7] 张承钰, 袁利, 王立, 等. 空间光学敏感器像素位置精确测量技术发展现状[J]. 空间控制技术与应用, 2019, 45(2): 11-17. ZHANG Cheng-yu, YUAN Li, WANG Li, et al. Current situation of pixel position accurate measurement technique for spatial optical sensor[J]. Aerospace Control and Application, 2019, 45(2): 11-17. [8] 卢欣, 武延鹏, 钟红军, 等. 星敏感器低频误差分析[J]. 空间控制技术与应用, 2014, 40(2): 1-7. LU Xin, WU Yan-peng, ZHONG Hong-jun, et al. Low frequency error analysis of star sensor[J]. Aerospace Control and Application, 2014, 40(2): 1-7 [9] 霍德聪, 黄琳, 李岩, 等. 星敏感器在轨测量误差分析[J]. 遥感学报, 2012, 16(z1): 57-60. HUO De-cong, HUANG Lin, LI Yan, et al. An analytical method of star tracker measurement errors[J]. Journal of Remote Sensing, 2012, 16(z1): 57-60. [10] 熊凯, 宗红, 汤亮. 星敏感器低频误差在轨校准方法研究[J]. 空间控制技术与应用, 2014, 40(3): 8-13. XIONG Kai, ZONG Hong, TANG Liang. On star sensor low frequency error in-orbit calibration method[J]. Aerospace Control and Application, 2014, 40(3): 8-13. [11] 庞博, 李果, 黎康, 等. 一种基于地标的星敏感器低频误差在轨校正方法[J]. 航天器工程, 2018, 27(3): 79-85. PANG Bo, LI Guo, LI Kang, et al. On-orbit calibration method of star sensor's low frequency error based on landmark[J]. Spacecraft Engineering, 2018, 27(3): 79-85. [12] 赵琳, 谢瑞达, 刘源, 等. 星敏感器低频误差与陀螺漂移离线校正方法[J]. 航空学报, 2017, 38(5): 197-210. ZHAO Lin, XIE Rui-da, LIU Yuan, et al. Offline calibration method of low frequency error of star sensor and gyroscope drift[J]. Acta Aeronautica ET Astronautica Sinica, 2017, 38(5): 197-210. [13] Savage P G.Strapdown inertial navigation integration algorithm design part 1: attitude algorithms[J]. Journal of Guidance, Control and Dynamics, 1998, 21(1): 19-28. [14] Savage P G.Strapdown inertial navigation integration algorithm design part 2: velocity and position algorithms[J]. Journal of Guidance, Control and Dynamics, 1998, 21(2): 208-221. [15] 李骥, 张洪华, 赵宇, 等. 嫦娥三号着陆器的陀螺在轨标定[J]. 中国科学: 技术科学, 2014, 44(6): 582-588. LI Ji, ZHANG Hong-hua, ZHAO Yu, et al. In-flight calibration of the gyros of the Chang'E-3 lunar lander[J]. Scientia Sinica(Technologica), 2014, 44(6): 582-588. [16] Li J, Wang D Y. Autonomous positioning and orientating for lunar launch[C]. 62nd International Astronautical Congress, 2011 [17] 高阳, 王猛, 刘蕾, 等. 基于高轨航天器的GNSS接收机技术[J]. 中国空间科学技术, 2017, 37(3): 101-109. GAO Yang, WANG Meng, LIU Lei, et al. GNSS receiver techniques based on high earth orbit spacecraft[J]. Chinese Space Science and Technology, 2017, 37(3): 101-109. [18] Kriegsman B A. Radar-update inertial navigation of a continuously-powered space vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems, 1966, AES-2(4): 549-565. [19] Eichler J. A performance study of the lunar module's landing radar system[J]. Journal of Spacecraft and Rockets, 1968, 5(9): 1016-1022. [20] 张洪华, 李骥, 关轶峰, 等. 嫦娥三号着陆器动力下降的自主导航[J]. 控制理论与应用, 2014, 31(12): 1686-1694. ZHANG Hong-hua, LI Ji, GUAN Yi-feng, et al. Autonomous navigation for powered descent phase of Chang'E-3 lunar lander[J]. Control Theory & Applications, 2014, 31(12): 1686-1694. [21] Ely T A,Chau A H. Radar altimetry and velocimetry for inertial navigation: a lunar landing example[C]. AAS/AIAA Astrodynamics Specialist Conference, 2011: 2041-2060. [22] Ning X L, Gui M Z, Fang J C, et al. A novel autonomous celestial navigation method using solar oscillation time delay measurement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1392-1403. [23] Lee A Y, Ely T A, Sostaric R R, et al. Preliminary design of the guidance, navigation, and control system of the Altair lunar lander[C]. AIAA Guidance, Navigation, and Control Conference, 2010. [24] 张洪华, 关轶峰, 程铭, 等. 嫦娥四号着陆器制导导航与控制系统[J]. 中国科学: 技术科学, 2019, 49(12): 1418-1428. ZHANG Hong-hua, GUAN Yi-feng, CHENG Ming, et al. Guidance navigation and control for Chang'E-4 lander[J]. Scientia Sinica(Technologica), 2019, 49(12): 1418-1428. [25] Li R S, Needelman D, Fowell R, et al. Reusable stellar inertial attitude determination(SIAD) design for spacecraft guidance, navigation & control[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005. [26] 江城, 张嵘. 美国Micro-PNT发展综述[C]. 第六届中国卫星导航学术年会, 2015. JIANG Cheng, ZHANG Rong. Overview on American micro-PNT development[C]. 6th China Satellite Navigation Conference, 2015. [27] Richeson J A, Pines D J. GPS denied inertial navigation using gravity gradiometry[C]. AIAA Guidance, Naviga-tion and Control Conference and Exhibit, 2007. [28] 窦爱萍, 李鹏, 张磊, 等. 全源自适应导航技术研究[J]. 航空计算技术, 2018, 48(5): 318-324. DOU Ai-ping, LI Peng, ZHANG Lei, et al, Research on navigation technology with all sources adaptive[J]. Aeronautical Computing Technique, 2018, 48(5): 318-324. [29] Kaidy J, Criss T, Dong C, et al. Robotic lunar lander guidance, navigation and control concept and analysis[C]. AAS/AIAA Astrodynamics Specialist Conference, 2011: 69-87. [30] Ely T A,Heyne M, Riedel J E. Altair navigation performance during translunar cruise, lunar orbit, descent, and landing[J]. Journal of Spacecraft and rockets, 2012, 49(2): 295-317. [31] Riedel J E, Vaughan A T, Werner R A, et al. Opticalnavigation plan and strategy for the lunar lander Altair; OpNav for lunar and other crewed and robotic exploration applications[C]. AIAA Guidance, Navigation, and Control Conference, 2010. [32] Nelessen A, Sackier C, Clark I, et al, Mars 2020 entry, descent, and landing system overview[C]. IEEE Aeros-pace Conference, 2019. [33] Lightsey E G, Mogensen A E, Burkhart P D, et al. Real-time navigation for Mars missions using the Mars Network[J]. Journal of Spacecraft and Rockets, 2008, 45(3): 519-533. [34] Bell D J, Cesarone R, Ely T A, et al. Mars network: a Mars orbiting communications and navigation satellite constellation[C]. IEEE Aerospace Conference Proceedings, 2000: 75-88. [35] 崔平远, 窦强, 高艾. 火星大气进入段通信 “黑障” 问题研究综述[J]. 宇航学报, 2014, 35(1): 1-12. CUI Ping-yuan, DOU Qiang, GAO Ai. Review of communication blackout problems encountered during Mars entry phase[J]. Journal of Astronautics, 2014, 35(1): 1-12. [36] 夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制——“恐怖”七分钟[M]. 北京: 科学出版社, 2018. XIA Yuan-qing. Navigation, guidance and control for the Mars entry, descent, and landing phase [M]. Beijing: Science Press, 2018. [37] Morabito D D. The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres[R]. Pasadena: Jet Propulsion Laboratory, 2002. [38] Bahm C, Baumann E, Martin J, et al. The X-43A Hyper-X Mach 7 flight 2 guidance, navigation, and control overview and flight test results[C]. AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies, 2005. [39] Karlgaard C D, Beck R E, O'Keefe S A, et al. Mars entry atmospheric data system modeling and algorithm development[C]. 41st AIAA Thermophysics Conference, 2009. [40] Gazarik M J, Wright M J, Little A, et al. Overview of the MEDLI project[C]. IEEE Aerospace Conference, 2008. [41] 常国宾, 李胜全. 惯性技术视角下动态重力测量技术评述(三): 惯性导航与重力测量的融合[J]. 海洋测绘, 2014, 34(5): 7-12. CHANG Guo-bin, LI Sheng-quan. Overview on dynamic gravimetry in the perspective of inertial technology, part III: the fusion of inertial navigation and gravimetry[J]. Hydrographic Surveying and Charting, 2014, 34(5): 7-12. |