导航与控制 ›› 2020, Vol. 19 ›› Issue (4/5): 29-40.doi: 10.3969/j.issn.1674-5558.2020.h4.004
陈泺侃1,2, 陈帅1,2, 潘建伟1,2
收稿日期:
2020-03-20
出版日期:
2020-10-05
发布日期:
2020-12-22
通讯作者:
潘建伟,男,1999年获奥地利维也纳大学实验物理博士学位,2011年当选为中国科学院院士,现任中国科学技术大学教授/博士生导师、中科院量子信息与量子科技创新研究院院长。利用量子光学手段在量子信息领域取得了一系列有重要意义的研究成果,尤其是关于量子通信和多光子纠缠操纵的系统性创新工作使量子信息实验研究成为近年来物理学发展最迅速的方向之一(为本文通信作者,Email:pan@ustc.edu.cn)。
作者简介:
陈泺侃,男,2015年获中国科学技术大学理学博士学位,现任中国科学技术大学/中科院量子信息与量子科技创新研究院副研究员。早先在实用化量子密钥分发、基于线性光学的量子纠缠制备与操控方面开展了部分工作并取得了一系列成果,目前研究方向为基于冷原子干涉仪的量子精密测量。陈帅,男,2005年获北京大学理学博士学位,现任中国科学技术大学/中科院量子信息与量子科技创新研究院教授/博士生导师。回国至今,致力于发展光与超冷原子的量子调控技术并系统性地应用于量子模拟、量子精密测量等方向,在人工规范场合成和拓扑物理研究中取得了一系列原创性成果,在超冷原子量子模拟领域做出了特色,2020年获国家杰出青年科学基金资助。
CHEN Luo-kan1,2, CHEN Shuai1,2, PAN Jian-wei1,2
Received:
2020-03-20
Online:
2020-10-05
Published:
2020-12-22
摘要: 惯性技术因其强自主性、不依赖外界信号、适应全天候等特性在导航领域备受关注,为了提升惯性导航的精度,数十年来人们在如何提高惯性传感器性能方面进行了大量的攻关工作并研制出了多种基于不同原理的惯性传感器。得益于量子效应,原子传感器能在诸如时间、加速度、转动、磁场等领域提供比现有技术更高的测量灵敏度、精度和速度。通过研制基于原子干涉技术的高精度原子惯性器件,实现重力/重力梯度数据实时补偿匹配的量子导航将是新一代高精准军用惯性导航的首选。本文简要介绍了以物质波干涉为基础的原子干涉惯性器件的原理,回顾了以原子重力仪、原子干涉陀螺为主的技术发展历程及现状,并结合我国目前在该领域的发展态势,表达了对我国原子惯性设备实装应用的迫切性。
中图分类号:
陈泺侃, 陈帅, 潘建伟. 原子干涉技术在惯性领域中的应用[J]. 导航与控制, 2020, 19(4/5): 29-40.
CHEN Luo-kan, CHEN Shuai, PAN Jian-wei. Atomic Interference-based Quantum Technology and Its Application for Inertial Navigation[J]. Navigation and Control, 2020, 19(4/5): 29-40.
[1] 王巍. 惯性技术研究现状及发展趋势[J]. 自动化学报, 2013, 39(6): 723-729. WANG Wei. Status and development trend of inertial technology[J]. Acta Automatica Sinica, 2013, 39(6): 723-729. [2] 顾英. 惯导加速度计技术综述[J]. 飞航导弹, 2001(6): 78-84. GU Ying.Overview of inertial navigation accelerometer technology[J]. Aerodynamic Missile Journal, 2001(6): 78-84. [3] 薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制, 2018, 17(2): 1-9+40. XUE Lian-li, CHEN Shao-chun, CHEN Xiao-zhen. Development and review of foreign inertial technology in 2017[J]. Navigation and Control, 2018, 17(2): 1-9+40. [4] 许大欣. 利用重力异常匹配技术实现潜艇导航[J]. 地球物理学报, 2005, 48(4): 812-816. XU Da-xin. Using gravity anomaly matching techniques to implement submarine navigation[J]. Chinese Journal of Geophysics, 2005, 48(4): 812-816. [5] 王虎彪, 王勇, 许大欣, 等. 重力异常和重力梯度联合辅助导航算法及仿真[J]. 地球物理学进展, 2011, 26(1): 116-122. WANG Hu-biao, WANG Yong, XU Da-xin, et al. Aided navigation algorithm and simulation research based on the data of gravity anomaly and gravity gradient[J]. Progress in Geophysics, 2011, 26(1): 116-122. [6] 刘繁明, 成怡. 重力/惯性匹配导航系统的仿真研究[J]. 中国惯性技术学报, 2005, 13(3): 22-25+29. LIU Fan-ming, CHENG Yi. Simulation on integrated gravity/inertial navigation system[J]. Journal of Chinese Inertial Technology, 2005, 13(3): 22-25+29. [7] 李德禹. 水下重力梯度导航关键技术研究[D].华中科技大学, 2009. LI De-yu. Study of key technology of underwater gravity gradient navigation[D]. Huazhong University of Science and Technology, 2009. [8] Rice H,Kelmenson S, Mendelsohn L. Geophysical navigation technologies and applications[C]. Position Loca-tion and Navigation Symposium, 2004: 618-624. [9] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit[J]. Science, 2004, 306(5700):1330-1336. [10] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Physical Review Letters, 2006, 97(1): 010402. [11] Lenef A, Hammond T D, Smith E T, et al. Rotation sensing with an atom interferometer[J]. Physical Review Letters, 1997, 78(5): 760-763. [12] Peters A, Chung K Y, Chu S. Measurement of gravita-tional acceleration by dropping atoms[J]. Nature, 1999, 400(6747):849-852. [13] Snadden M J, McGuirk J M, Bouyer P, et al. Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer[J]. Physical Review Letters, 1998, 81(5): 971-974. [14] McGuirk J M, Foster G T, Fixler J B, et al. Sensitive absolute gravity gradiometry using atom interferometry[J]. Physical Review A, 2001, 65(3): 033608. [15] Vengalattore M, Higbie J, Leslie S R, et al. High-resolution magnetometry with a spinor Bose-Einstein condensate[J]. Physical Review Letters, 2007, 98(20): 200801. [16] Cladé P, de Mirandes E, Cadoret M, et al. Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: determination of the fine-structure constant[J]. Physical Review A, 2006, 74(5): 052109. [17] Müller H, Chiow S W, Long Q, et al. A new photon recoil experiment: towards a determination of the fine structure constant[J]. Applied Physics B, 2006, 84(4): 633-642. [18] Bouchendira R, Cladé P, Guellati-Khélifa S, et al. New determination of the fine structure constant and test of the quantum electrodynamics[J]. Physical Review Letters, 2011, 106(8): 080801. [19] Estey B, Yu C H, Müller H, et al. High-resolution atom interferometers with suppressed diffraction phases[J]. Physical Review Letters, 2015, 115(8): 083002. [20] Parker R, Yu C H, Zhong W C, et al. Measurement of the fine-structure constant as a test of the standard model[J]. Science, 2018, 360(6385): 191-195. [21] Fixler J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the Newtonian constant of gravity[J]. Science, 2007, 315(5808): 74-77. [22] Rosi G, Sorrentino F, Cacciapuoti L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 2014, 510(7506): 518-521. [23] Fray S,Alvarez Diez C, Hänsch, T W, et al. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle[J]. Physical Review Letter, 2004, 93(24): 240404. [24] Dimopoulos S, Graham P W, Hogan J M, et al. Testing general relativity with atom interferometry[J]. Physical Review Letters, 2007, 98(11): 111102. [25] Schlippert D, Hartwig, J, Albers H, et al. Quantum test of the universality of free fall[J]. Physical Review Letters, 2014, 112(20): 203002. [26] Amelino-Camelia G, Lämmerzahl C, Mercati F, et al. Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms[J]. Physical Review Letters, 2009, 103(17): 171302. [27] Tino G M, Vetrano F. Is it possible to detect gravitational waves with atom interferometers?[J]. Classical and Quantum Gravity, 2007, 24(9): 2167-2178. [28] Dimopoulos S, Graham P W, Hogan J M, et al. An atomic gravitational wave interferometric sensor(AGIS)[J]. Physical Review D, 2009, 78(12): 122002. [29] 刘院省, 阚宝玺, 石猛, 等. 原子陀螺仪技术研究进展[C]. 第四届航天电子战略研究论坛, 2018. LIU Yuan-xing, KAN Bao-xi, SHI Meng, et al. Technical progress in atomic gyroscopes[C]. The 4th Aerospace Electronics Strategic Research Forum, 2018. [30] Liu Y X, Shi M, Wang X. Progress on atomic gyroscope[C]. The 24th Saint Petersburg International Conference on Integrated Navigation Systems, 2017. [31] Fang J C, Qin J. Advances in atomic gyroscopes: a view from inertial navigation applications[J]. Sensors, 2012, 12(5): 6331-6346. [32] 陈乐乐, 罗覃, 邓小兵, 等. 基于原子干涉技术的精密重力测量研究[J]. 中国科学: 物理学 力学 天文学, 2016, 46(7): 073003. CHEN Le-le, LUO Qin, DENG Xiao-bing, et al. Precision gravity measurements with cold atom interferometer[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2016, 46(7): 073003. [33] 吴彬, 王肖隆, 王河林, 等. 冷原子干涉型重力仪的发展现状与趋势[J]. 导航与控制, 2015, 14(2): 2-9. WU Bin, WANG Xiao-long, WANG He-lin, et al. The current situation and tread of the gravimeter based on cold atom interferometer[J]. Navigation and Control, 2015, 14(2): 2-9. [34] 吴琼, 滕云田, 张兵, 等. 世界重力梯度仪的研究现状[J]. 物探与化探, 2013, 37(5): 761-768. WU Qiong, TENG Yun-tian, ZHANG Bing, et al. The research situation of the gradiometer in the world[J]. Geophysical & Geochemical Exploration, 2013, 37(5): 761-768. [35] Clauser J F. Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry[J]. Physica B+C, 1988, 151(1-2):262-272. [36] Kasevich M A, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 1991, 67(2): 181-184. [37] Kasevich M A, Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer[J]. Applied Physics B, 1992, 54(5): 321-332. [38] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046-2049. [39] Peters A, Chung K Y, Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61. [40] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom-interferometer Sagnac gyroscope[J]. Classical and Quantum Gravity, 2000, 17(12): 2385-2398. [41] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 2006, 97(24): 240801. [42] Takase K. Precisionrotation rate measurements with a mobile atom interferometer[D]. Stanford University, 2008. [43] Stockton J K,Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom Interferometry[J]. Physical Review Letters, 2011, 107(13): 133001. [44] McGuinness H J, Rakholia A V, Biedermann G W. High data-rate atom interferometer for measuring acceleration[J]. Applied Physics Letters, 2012, 100(1): 011106. [45] Rakholia A V, McGuinness H J, Biedermann G W. Dual-axis, high data-rate atom interferometer via cold ensemble exchange[J]. Physical Review Applied, 2014, 2(5): 054012. [46] Wu X J, Pagel Z, Malek B S, et al.Gravity surveys using a mobile atom interferometer[J]. Science Advances, 2019, 5(9): eaax0800. [47] Lévèque T, Gauguet A, Michaud F, et al. Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique[J]. Physical Review Letters, 2009, 103(8): 080405. [48] Malossi N, Bodart Q, Merlet S, et al. Double diffraction in an atomic gravimeter[J]. Physical Review A, 2010, 81(1): 013617. [49] Bodart Q, Merlet S, Malossi N, et al. A cold atom pyramidal gravimeter with a single laser beam[J]. Applied Physics Letters, 2010, 96(13): 134101. [50] Geiger R, Ménoret V, Stern G, et al.Detecting inertial effects with airborne matter-wave interferometry[J]. Nature Communications, 2011, 2: 474. [51] Barrett B,Antoni-Micollier L, Chichet, L, et al. Dual matter-wave inertial sensors in weightlessness[J]. Nature Communications, 2016, 7: 13786. [52] Bidel Y, Carraz O, Charrière R, et al. Compact cold atom gravimeter for field applications[J]. Applied Physics Letters, 2013, 102(14): 144107. [53] Gillot P, Cheng B, Imanaliev A, et al. The LNE-SYRTE cold atom gravimeter[C]. European Frequency and Time Forum, 2016. [54] Bidel Y, Zahzam N, Blanchard C, et al.Absolute marine gravimetry with matter-wave interferometry[J]. Nature Communications, 2018, 9(1): 627. [55] Savoie D, Altorio M, Fang B, et al. Interleaved atom interferometry for high-sensitivity inertial measurements[J]. Science Advances, 2018, 4(12): eaau7948. [56] Ménoret V, Vermeulen P, Le Moigne N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter[J]. Scientific Reports, 2018, 8(1): 12300. [57] Bidel Y, Zahzam N, Bresson A, et al. Absolute airborne gravimetry with a cold atom sensor[J]. Journal of Geodesy, 2020, 94(2): 20. [58] Müller T, Gilowski M, Zaiser M, et al.A compact dual atom interferometer gyroscope based on laser-cooled Rubidium[J].The European Physical Journal D, 2009, 53(3): 273-281. [59] Hauth M, Freier C, Schkolnik V, et al. GAIN—a portable atom interferometer for on site measurements of local gravity[C]. Laser Science, 2013. [60] Tackmann G, Berg P, Abend S, et al. Large-area Sagnac atom interferometer with robust phase read out[J]. Comptes Rendus Physique, 2014, 15(10): 884-897. [61] Freier C, Hauth M, Schkolnik V, et al. Mobile quantum gravity sensor with unprecedented stability[C]. 8th Symposium on Frequency Standards and Metrology, 2017. [62] Berg P,Abend S, Tackmann G, et al. Composite-light-pulse technique for high-precision atom interferometry[J]. Physical Review Letters, 2015, 114(6): 063002. [63] Abend S, Gebbe M, Gersemann M, et al. Atom-chip fountain gravimeter[J]. Physical Review Letters, 2016, 117(20): 203003. [64] Lamporesi G, Bertoldi A, Cacciapuoti L, et al. Determination of the Newtonian gravitational constant using atom interferometry[J]. Physical Review Letters, 2008, 100(5): 050801. [65] Sorrentino F, Bertoldi A, Bodart Q, et al. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer[J]. Applied Physics Letters, 2012, 101(11): 114106. [66] Mazzoni T, Zhang X, Del Aguila R, et al. Large-momentum-transfer Bragg interferometer with Strontium atoms[J]. Physical Review A, 2015, 92(5): 053619. [67] Salvi L, Poli N, Vuletic V, et al. Squeezing on momentum states for atom interferometry[J]. Physical Review Letters, 2018, 120(3): 033601. [68] Hinton A,Perea-Ortiz M, Winch J, et al. A portable magneto-optical trap with prospects for atom interferometry in civil engineering[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Enginee-ring Sciences, 2017, 375(2099): 20160238. [69] Yu D H, Park S E, Heo M S, et al. Atomic clocks, gravimeters and interferometer research at KRISS[J]. AAPPS Bulletin, 2017, 27(1): 10-16. [70] Zhou L, Xiong Z Y, Yang W, et al. Measurement of local gravity via a cold atom interferometer[J]. Chinese Physics Letters, 2011, 28(1): 013701. [71] Wang YP, Zhong J Q, Song H W, et al. Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers[J]. Physical Review A, 2017, 95(5): 053612. [72] Huang P W, Tang B, Chen X, et al. Accuracy and stability evaluation of the85Rb atom gravimeter WAG-H5-1 at the 2017 international comparison of absolute gravimeters[J]. Metrologia, 2019, 56(4): 045012 [73] Zhou M K, Hu Z K, Duan X C, et al. Performance of a cold-atom gravimeter with an active vibration isolator[J]. Physical Review A, 2012, 86(4): 043630. [74] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610. [75] Luo Q, Zhang H, Zhang K, et al. A compact laser system for a portable atom interferometry gravimeter[J]. The Review of Scientific Instruments, 2019, 90(4): 43104. [76] Wu B, Wang Z Y, Cheng B, et al. The investigation of aμGal-level cold atom gravimeter for field applications[J]. Metrologia, 2014, 51(5): 452-458. [77] Fu Z J, Wu B, Cheng B, et al. A new type of compact gravimeter for long-term absolute gravity monitoring[J]. Metrologia, 2019, 56(2): 025001. [78] 吴彬, 周寅, 程冰, 等. 基于原子重力仪的车载静态绝对重力测量[J]. 物理学报, 2020, 69(6): 060302. WU Bin, ZHOU Yin, CHENG Bing, et al. Static measurement of absolute gravity in truck based on atomic gravimeter[J]. Acta Physica Sinica, 2020, 69(6): 060302. [79] Wang S K, Zhao Y, Zhuang W, et al. Shift evaluation of the atomic gravimeter NIM-AGRb-1 and its comparison with FG5X[J]. Metrologia, 2018, 55(3): 360-365. [80] 罗玉昆. 冷原子干涉精密重力测量系统关键技术研究[D]. 国防科技大学, 2017. LUO Yu-kun. Research on key technologies of precision gravity measurement system based on cold atom interferometry[D]. National University of Defense Technology, 2017. [81] Xie H T, Chen B, Long J B, et al. Calibration of a compact absolute atomic gravimeter[J]. Chinese Physics B, 2020, 29(9): 093701. [82] Chen B, Long J B,Xie H T, et al. Portable atomic gravimeter operating in noisy urban environments[J]. Chinese Optics Letters, 2020, 18(9): 090201. [83] 王安琪, 孟至欣, 李营营, 等. 连续冷原子束干涉陀螺仪研究进展[J]. 导航定位与授时, 2017, 4(1): 77-84. WANG An-qi, MENG Zhi-xin, LI Ying-ying, et al. Research progress in a continuous cold atomic beam interferometer gyroscope[J]. Navigation Positioning and Timing, 2017, 4(1): 77-84. [84] Yao Z W, Lu S B, Li R B, et al. Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope[J]. Physical Review A, 2018, 97(1): 013620. |
[1] | 伦华江, 徐枫, 黄喆, 许东旭, 张晓日. 基于惯性/航迹推测的煤矿掘锚机组合导航方法[J]. 导航与控制, 2021, 20(4): 33-40. |
[2] | 罗子岩, 陈帅, 王国栋, 赵海飞, 马永犇. 多源融合导航系统的因子图算法综述[J]. 导航与控制, 2021, 20(3): 9-16. |
[3] | 李鹏, 魏宗康, 石阳, 李海兵, 罗骋. 基于姿态角信息的载体升沉位移测量[J]. 导航与控制, 2021, 20(3): 99-106. |
[4] | 邱东, 刘明, 游浪. 舰载转运弹链用对准系统设计与研究[J]. 导航与控制, 2021, 20(3): 112-120. |
[5] | 白龙, 彭荆明, 吴爽, 吕志刚. 参数优化方法在AUV组合导航系统PQR调参中的工程应用[J]. 导航与控制, 2021, 20(1): 58-69. |
[6] | 赵欣, 苗圃, 陈善秋. 激光捷联惯导量化热设计指标控制方法[J]. 导航与控制, 2021, 20(1): 86-91. |
[7] | 赵欣, 魏伟, 张杰. 机抖激光陀螺捷联系统动力学建模及结构动特性设计方法[J]. 导航与控制, 2020, 19(6): 35-43. |
[8] | 汪顺亭, 汪湛清. 水下运载体导航技术[J]. 导航与控制, 2020, 19(4/5): 1-14. |
[9] | 雷宏杰, 高关根, 李伟. 机载导航技术的发展现状与趋势分析[J]. 导航与控制, 2020, 19(4/5): 74-81. |
[10] | 赵小明, 陈刚. 舰船导航发展现状与趋势[J]. 导航与控制, 2020, 19(4/5): 82-87. |
[11] | 赵砚驰, 程建华, 赵琳. 惯性导航系统陀螺仪的发展现状与未来展望[J]. 导航与控制, 2020, 19(4/5): 189-196. |
[12] | 姜福灏, 汪世林. 空间三轴激光陀螺现状与展望[J]. 导航与控制, 2020, 19(4/5): 197-207. |
[13] | 黄晨, 陈福胜. 基于蒙特卡罗方法的冷原子干涉仪物理仿真[J]. 导航与控制, 2020, 19(4/5): 216-222. |
[14] | 胡兵, 党峰, 王宝林. 导航系统高动态校准火箭橇试验平台研制[J]. 导航与控制, 2020, 19(3): 95-99. |
[15] | 薛连莉, 沈玉芃, 宋丽君, 陈效真. 2019年国外导航技术发展综述[J]. 导航与控制, 2020, 19(2): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||