提出一种基于“四合一”多功能集成光芯片和微型保偏光子晶体光纤环的干涉式光纤陀螺。“四合一”多功能光芯片利用混合集成技术将超辐射发光二极管(Super-Luminescent Diode, SLD)光源、耦合器、薄膜铌酸锂调制器、探测器组合在一起。为了在获得高敏感效应的同时尽可能减小陀螺尺寸,采用60 μm/100 μm超细径保偏光子晶体光纤绕制干涉环,最终实现Φ30 mm高精度集成化光纤陀螺样机的研制。常温测试结果表明,陀螺随机游走系数0.012 (°)/h1/2,10 s平滑零偏稳定性0.23 (°)/h(1σ),标度因数非线性2.83×10-5(-100 (°)/s~+100 (°)/s)。-30~60℃温度范围内,陀螺10 s平滑零偏稳定性0.51 (°)/h(1σ)。与传统基于分立器件的光纤陀螺相比,所提出的集成化光纤陀螺同时具有小尺寸和高精度的优势,在新型战术武器、无人系统等领域应用具有独特优势。
Abstract
A novel interferometric fiber optic gyroscope (I-FOG) based on a “four-in-one” multifunctional integrated optical chip and micro polarization-maintaining photonic-crystal fiber (PM-PCF) coil is proposed. The “four-in-one” multifunctional integrated optical chip integrates super-luminescent diode light source, couplers, thin-film lithium niobate (TFLN) modulator and photodiode detector employing a hybrid integration technology. To obtain a high sensitivity effect and minimize the I-FOG as much as possible, a type of 60 μm/100 μm ultra-thin diameter PM-PCF is customized to wind the interference ring, and a high-accuracy integrated I-FOG prototype with the volume of Φ30 mm is achieved. It experimentally demonstrates a smooth bias stability of 0.23 (°)/h(1σ)at the integration time of 10 s, with an angle random walk (ARW) of 0.012 (°)/h1/2 and a scale factor nonlinearity of 2.83×10-5 over the range of ±100 (°)/s at room temperature. It also shows a smooth bias stability of 0.51 (°)/h (1σ) at the integration time of 10 s over the temperature range from -30~60 ℃. Compared with conventional I-FOG with discrete photo-electric devices, the I-FOG proposed has both small volume and high accuracy, which has unique advantages for application in the field of new-type tactical weapons, unmanned systems and other fields.
关键词
多功能集成光芯片 /
薄膜铌酸锂调制器 /
保偏光子晶体光纤
{{custom_keyword}} /
Key words
multifunctional integrated optical chip /
thin-film lithium niobate modulator /
polarization-maintaining photonic-crystal fiber
{{custom_keyword}} /
中图分类号:
V241.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨纪刚, 毕聪志, 孙国飞. 光纤传感环圈骨架热应力仿真计算与实验研究[J]. 导航定位与授时, 2016, 3(3): 65-73.
YANG Jigang,BI Congzhi,SUN Guofei. Thermal stress calculation and experiment investigation of fiber optical sensor coil spool[J]. Navigation Positioning & Timing, 2016, 3(3): 65-73.
[2] 石海洋, 于海成, 冯文帅, 等. 光纤陀螺本征频率对准误差引起的零偏漂移抑制方法[J]. 导航与控制, 2018, 17(5): 100-105.
SHI Haiyang, YU Haicheng, FENG Wenshuai,et al. Study on the suppression method of bias drift caused by the intrinsic frequency alignment error of fiber optic gyroscopes [J]. Navigation and Control, 2018, 17(5): 100-105.
[3] LEFÈVRE H C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology [J]. Optical Fiber Technology, 2013,19(6): 828-832.
[4] TRAN M A, KOMLJENOVIC T, HULME J C, et al. Integrated optical driver for interferometric optical gyroscopes[J]. Optics Express, 2017, 25(4): 3826-3840.
[5] RICKMAN A. The commercialization of silicon photonics[J]. Nature Photonics, 2014, 8: 579-582.
[6] FINDAKLY T, BRAMSON M. High-performance integrated-optical chip for a broad range of fiber-optic gyro applications[J]. Optics Letters, 1990, 15(12): 673-675.
[7] YI X S, WEN X. Y-integrated optic chip (Y-IOC) applied in fiber optic gyro[C]. 13th International Conference on Advanced Laser Technologies, Tianjin, China, 2005: 63440U.
[8] STOPIŃSKI S, JUSZA A, PIRAMIDOWICZ R. An interferometric fiber-optic gyroscope system based on an application specific photonic integrated circuit[C]. 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25-29 June, 2017: 8086879.
[9] GUO H J, LIU H F, LEI M, et al. Research progress of integrated optical gyroscope[J]. Chinese Optics Letters, 2024, 22(3): 031302.
[10] WANG L M, HALSTEAD D R, D MONTE T, et al. Low-cost, high-end tactical-grade fiber optic gyroscope based on photonic integrated circuit[C]. 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Naples, USA, 1-5 April, 2019: 8739700.
[11] SHANG K J, LEI M, XIANG Q, et al. Near navigation-grade interferometric fiber optic gyroscope with an integrated optical chip[J]. Chinese Optics Letters, 2020, 18(12): 120601.
[12] SHANG K J, LEI M, XIANG Q, et al. Tactical-grade interferometric fiber optic gyroscope based on an integrated optical chip[J]. Optics Communications, 2021, 485: 126729.
[13] GUO Z Y, JIN J, WANG X W, et al. Three-axis interferometric fiber optic gyroscope with silica integrated coupler chip[J]. IEEE Sensors Journal, 2023, 23(9): 9323-9332.
[14] LI X Y, PEI W X, LU Y, et al. Interferometric optical gyroscope based on hybrid integrated optical transceiver module[J]. IEEE Sensors Journal, 2024, 24(22): 36672-36679.
[15] 索鑫鑫. 抗辐射、低噪声、高稳定掺铒光纤光源研究[D]. 北京: 北京航空航天大学, 2014.
SUO Xinxin. Research on the radiation-resistant, low noise, high stability Er-doped fiber source[D]. Beijing: Beihang University, 2014.
[16] SUO X X, YU H C, WU X D. Integrated interferometric fiber optic gyroscope employing a photo-electronic chip[J]. IEEE Photonics Technology Letters, 2022, 34(22): 1250-1253.
[17] GUNDAVARAPU S, BELT M, HUFFMAN T A, et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil[J]. Journal of Lightwave Technology, 2018, 36(4): 1185-1191.
[18] LIU D N, LI H, WANG X, et al. Interferometric optical gyroscope based on an integrated silica waveguide coil with low loss[J]. Optics Express, 2020, 28(10): 15718-15730.
[19] SONG N F, CAI W, SONG J M, et al. Structure optimization of small-diameter polarization-maintaining photonic crystal fiber for mini coil of spaceborne miniature fiber-optic gyroscope[J]. Applied Optics, 2015, 54(33): 9831-9838.
[20] MA P, SONG N F, JIN J, et al. Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers[J]. Optics & Laser Technology, 2012, 44(6): 1829-1833.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}