气室无磁加热结构研究进展与展望

牛雪迪, 刘峰, 范文峰, 全伟

导航与控制 ›› 2021, Vol. 20 ›› Issue (2) : 9-17.

PDF(2508 KB)
PDF(2508 KB)
导航与控制 ›› 2021, Vol. 20 ›› Issue (2) : 9-17. DOI: 10.3969/j.issn.1674-5558.2021.02.002
综述

气室无磁加热结构研究进展与展望

  • 牛雪迪1, 刘峰1, 范文峰1, 全伟2
作者信息 +

Progress and Prospect of the Research on Vapor Cell Non-magnetic Heating Structure

  • NIU Xue-di1, LIU Feng1, FAN Wen-feng1, QUAN Wei2
Author information +
文章历史 +

摘要

碱金属气室是原子陀螺、原子磁强计和原子钟等原子测量仪器的核心部件。原子密度主要受加热温度的影响,高均匀性、高稳定性的气室加热结构是保证碱金属原子密度稳定的关键技术,对提升原子测量仪器输出信号的灵敏度至关重要。回顾了目前常用的碱金属气室加热方法,针对加热层、传热层、保温层等组件,梳理和总结了碱金属气室加热结构的发展方向和发展历程,并在此基础上展望了未来碱金属气室加热结构的发展趋势。

Abstract

An alkali metal atomic vapor cell is the core component of atomic measuring instruments such as atomic gyroscope, atomic magnetometer and atomic clock. The atomic density is mainly affected by the heating temperature, the highly uniform and stable vapor cell heating structure is the key technology to ensure the stability of the alkali metal atom density, and it is essential to improve the sensitivity of the output signal of the atomic measuring instrument. In this paper, the heating methods for alkali metal vapor cell are reviewed. For the heating layer, heat transfer layer, insulation layer and other components, the development direction and process of alkali metal vapor cell heating structures are summarized, the future development trend of alkali metal vapor cell heating structure is also prospected.

关键词

原子测量仪器 / 原子气室 / 加热结构 / 小型化

Key words

atomic measuring instruments / atomic vapor cell / heating structure / miniaturization

引用本文

导出引用
牛雪迪, 刘峰, 范文峰, 全伟. 气室无磁加热结构研究进展与展望[J]. 导航与控制, 2021, 20(2): 9-17 https://doi.org/10.3969/j.issn.1674-5558.2021.02.002
NIU Xue-di, LIU Feng, FAN Wen-feng, QUAN Wei. Progress and Prospect of the Research on Vapor Cell Non-magnetic Heating Structure[J]. Navigation and Control, 2021, 20(2): 9-17 https://doi.org/10.3969/j.issn.1674-5558.2021.02.002
中图分类号: TG307   

参考文献

[1] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.
[2] Kornack T W, Smullin S J, Lee S K, et al. A low-noise ferrite magnetic shield[J]. Applied Physics Letters, 2007, 90(22): 223501.
[3] Knappe S, Mhaskar R R, Preusser J, et al. Chip-scale room-temperature atomic magnetometers for biomedical measurements[C]. 5th European Conference of the International Federation for Medical and Biological Engineering, 2012: 1330-1333.
[4] Kornack T W. A test of CPT and Lorentz symmetry using a Potassium-Helium-3 Co-magnetometer[D]. Princeton University, 2005.
[5] Li Z M, Wakai R T, Walker T G. Parametric modulation of an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(13): 2357553.
[6] Li Z M. Development of a parametrically modulated SERF magnetometer[D]. University of Wisconsin-Madison, 2006.
[7] 秦杰. 基于129Xe-Cs的SERF原子自旋陀螺仪原理实验研究[D]. 北京航空航天大学, 2012.
QIN Jie. Experimental development of SERF atomic spin gyroscope based on 129Xe-Cs[D]. Beijing University of Aeronautics and Astronautics, 2012.
[8] 刘强. 全光铯原子磁力仪系统设计[D]. 哈尔滨工程大学, 2012.
LIU Qiang. System design of all optical Cs atomic magnetometer[D]. Harbin Engineering University, 2012.
[9] Dang H B, Maloof A C, Romalis M V. Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.
[10] Wyllie R. Thedevelopment of a multichannel atomic magnetometer array for fetal magnetocardiography[D]. University of Wisconsin-Madison, 2012.
[11] Brown J M. A new limit on Lorentz-and CPT-violating neutron spin interactions using a Potassium-Helium comagnetometer[D]. Princeton University, 2011.
[12] Johnson C, Schwindt P D D, Weisend M P. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 2010, 97(24): 243703.
[13] Johnson C, Schwindt P D D. A two-color pump probe atomic magnetometer for magnetoencephalography[C]. IEEE International Frequency Control Symposium, 2010: 371-375.
[14] 曹砷坚. 碱金属钾原子磁强计的研制[D]. 云南大学, 2015.
CAO Shen-jian. Development of alkali metal Potassium atomic magnetometer[D]. Yunnan University, 2015.
[15] 王言章, 秦佳男, 张雪, 等. 用于SERF原子磁力仪的原子气室无磁加热系统[J]. 吉林大学学报(工学版), 2017, 47(2): 686-692.
WANG Yan-zhang, QIN Jia-nan, ZHANG Xue, et al. Non-magnetism heating system for atomic gas cell used in SERF atomic magnetometer[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 686-692.
[16] 易鑫, 汪之国, 夏涛, 等. 核磁共振陀螺中原子气室温度场的研究[J]. 中国光学, 2016, 9(6): 671-677.
YI Xin, WANG Zhi-guo, XIA Tao, et al. Research on temperature field in the vapor cell of nuclear magnetic resonance gyroscope[J]. Chinese Journal of Optics, 2016, 9(6): 671-677.
[17] 杜鹏程. 研制用于探测脑磁信号的超高灵敏度原子磁强计[D]. 中国科学院大学, 2019.
DU Peng-cheng. Developed an ultra-high sensitivity atomic magnetometer for detecting brain magnetic[D]. University of Chinese Academy of Sciences, 2019.
[18] 张鹏, 陈洪娟, 桂永雷, 等. 原子磁传感器原子气室无磁控温技术[J]. 传感器与微系统, 2017, 36(6): 18-21+25.
ZHANG Peng, CHEN Hong-juan, GUI Yong-lei, et al. Non-magnetic temperature control technology of atomic vapor cell in atomic magnetic sensors[J]. Transducer and Microsystem Technologies, 2017, 36(6): 18-21+25.
[19] 吴红卫, 郑盼盼, 王远超, 等. 原子磁强计原子气室无磁加热温控系统设计[J]. 宇航计测技术, 2019, 39(1): 40-46.
WU Hong-wei, ZHENG Pan-pan, WANG Yuan-chao, et al. Design of non-magnetism heating temperature control system for atomic vapor cell of atomic magnetometer[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(1): 40-46.
[20] 郝杰鹏, 周斌权. 碱金属气室无磁电加热技术研究与系统设计[J]. 计算机测量与控制, 2017, 25(5): 180-183.
HAO Jie-peng, ZHOU Bin-quan. Study on non-magnetic heating technology and system for alkali vapor cells[J]. Computer Measurement & Control, 2017, 25(5): 180-183.
[21] 许国伟, 张燚, 江奇渊, 等. 光吸收法控制核磁共振陀螺原子气室温度[J]. 红外与激光工程, 2019, 48(S1): 21-26.
XU Guo-wei, ZHANG Yi, JIANG Qi-yuan, et al. Temperature control of vapor cell based on the light absorption of nuclear magnetic resonance gyroscope[J]. Infrared and Laser Engineering, 2019, 48(S1): 21-26.
[22] Wu L,Gan Q, Ji Y, et al. Fabrication of wafer-level micro Silicon heaters for chip scale atomic magnetometers[C]. 16th International Conference on Electronic Packaging Technology, 2015: 943-946.
[23] Ji Y, Shang J T, Gan Q, et al. Micro-fabricated spherical Rubidium vapor cell and its integration in 3-axis atomic magnetometer[C]. IEEE 65th Electronic Components and Technology Conference, 2015: 946-949.
[24] Ji Y, Shang J T, Gan Q, et al. System integration of a SERF atomic magnetometer on a glass wafer substrate[C]. 16th International Conference on Electronic Packaging Technology, 2015: 939-942.
[25] 刘召军, 李坤, 李云超, 等. 芯片原子钟MEMS原子气室数字温控系统设计[J]. 半导体技术, 2019, 44(6): 410-414+420.LIU Zhao-jun, LI Kun, LI Yun-chao, et al. Design of the digital temperature control system for the chip scale atomic clock MEMS atomic vapor cell[J]. Semiconductor Technology, 2019, 44(6): 410-414+420.
[26] Cunningham C E, DeYoung T R, Bouma T A. Laser light heating for low-noise temperature control in SQUID applications[J]. Physica B: Condensed Matter, 2000, 284-288: 2111-2112.
[27] Preusser J, Knappe S, Kitching J, et al. A microfa-bricated photonic magnetometer[C]. IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, 2009: 1180-1182.
[28] Scholtes T, Schultze V, Ijsselsteijn R, et al. Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell[J]. Physical Review A, 2011, 84(4): 043416.
[29] Larsen M. Nuclearmagnetic resonance gyroscope[J]. Bulletin of the American Physical Society, 2011, 56(6): 8-16.
[30] 吴国龙. 微结构磁传感器无磁加热控温技术研究[D]. 哈尔滨工程大学, 2014.
WU Guo-long. Non-magnetic heating method for micro structural atomic magnetic sensor[D]. Harbin Engineering University, 2014.

基金

国家重点研发计划(编号:2016YFB0501600,2017YFB0503100);国家自然科学基金(编号:61925301,61773043,61673041,61721091)
PDF(2508 KB)

1349

Accesses

0

Citation

Detail

段落导航
相关文章

/