硅半球深腔结构无损检测技术

庄须叶, 丁景兵, 曹卫达, 吴梦茹

导航与控制 ›› 2019, Vol. 18 ›› Issue (2) : 89-95.

PDF(2116 KB)
PDF(2116 KB)
导航与控制 ›› 2019, Vol. 18 ›› Issue (2) : 89-95. DOI: 10.3969/j.issn.1674-5558.2019.02.014
测试与可靠性

硅半球深腔结构无损检测技术

  • 庄须叶, 丁景兵, 曹卫达, 吴梦茹
作者信息 +

Nondestructive Detection Technology of Silicon Hemispherical Deep Cavity Structure

  • ZHUANG Xu-ye, DING Jing-bing, CAO Wei-da, WU Meng-ru
Author information +
文章历史 +

摘要

半球深腔的加工质量是决定硅基MEMS半球陀螺精度的关键因素之一,及时检测半球深腔的形貌参数并将其反馈至加工过程,是确保高性能MEMS半球陀螺研制成功的重要措施。由于硅半球深腔的深度较大,台阶仪和光学显微成像系统无法对半球深腔的形貌特征进行有效测量。因此,需要将硅深腔结构剖开后采用扫描电镜(SEM)进行检测。这种检测方式时间周期长,且属于破坏性的样本检测,效率和测试精度都较低。提出以硅半球深腔为模具,利用PDMS铸模将硅半球深腔的结构尺寸和表面形貌转移到PDMS凸起的半球模型上,通过检测PDMS半球模型的尺寸结构和表面形貌,即可反推出硅半球深腔的尺寸特征。经实验验证,脱模后的PDMS模型可以准确地反映出半球深腔的尺寸信息,测量结果的不确定度小于5‰,有效解决了硅半球深腔无损检测的难题。

Abstract

The processing quality of hemispherical deep cavity is one of the key factors to determine the accuracy of Silicon-based MEMS hemispherical gyroscope. It is an important measure to ensure the success of the development of high performance MEMS hemispherical gyroscope to detect the geometric characteristics of hemispherical deep cavity in time and feed back to the processing process. Because of the large depth of Silicon hemispherical deep cavity, the step profiler and optical microscopic imaging system can not effectively measure the geometric characteristics of hemispherical deep cavity. It is necessary to detect the structure of Silicon deep cavity by SEM after dissecting. It takes a long time and belongs to destructive sample detection. The efficiency and accuracy are low. The structure size and geometric characteristics of Silicon hemispherical deep cavity which is the mould are transferred to the convex hemispherical model of PDMS by using PDMS molding. The size characteristics of Silicon hemispherical deep cavity can be deduced by detecting the size structure and geometric characteristics of PDMS hemispheric model. The experiment results show that the PDMS model after demoulding can accurately reflect the size information of Silicon hemispherical deep cavity, and the uncertainty of measurement results is less than 5‰, which effectively solves the problem of nondestructive detection of Silicon hemispherical deep cavity.

关键词

硅半球深腔 / 半球陀螺 / 无损检测 / 聚二甲基硅氧烷 / 铸模

Key words

Silicon hemispherical deep cavity / hemispherical gyroscope / nondestructive detection / polydimethylsiloxane(PDMS) / molding

引用本文

导出引用
庄须叶, 丁景兵, 曹卫达, 吴梦茹. 硅半球深腔结构无损检测技术[J]. 导航与控制, 2019, 18(2): 89-95 https://doi.org/10.3969/j.issn.1674-5558.2019.02.014
ZHUANG Xu-ye, DING Jing-bing, CAO Wei-da, WU Meng-ru. Nondestructive Detection Technology of Silicon Hemispherical Deep Cavity Structure[J]. Navigation and Control, 2019, 18(2): 89-95 https://doi.org/10.3969/j.issn.1674-5558.2019.02.014
中图分类号: TN305.7/V448.2   

参考文献

[1] Yole Développement. The 2011 market for high-perfor-mance gyroscopes is expected to reach $1.66B in 2017[R]. Lyon:Yole Développement, 2012.
[2]Nasiri S. A critical review of MEMS gyroscopes technology and commercialization status[R]. Santa Clara: Inven-Sense, 2003.
[3]Zhuang X Y, Chen B G, Wang X L, et al. Microsacle Polysilicon hemispherical shell resonating gyroscopes with integrated three-dimensional curved electrodes[J]. Journal of Physics Conference Series, 2018, 986(1): 012022.
[4]Singh S S, Nagourney T, Cho J Y, et al. Design and fabrication of high-Q birdbath resonator for MEMS gyroscopes[C]. Proceedings of IEEE/ION Position, Location and Navigation Symposium, 2018:15-19.
[5]Shao P, Tavassoli V, Mayberry C L, et al. A 3D-HARPSS Polysilicon micro-hemispherical shell resonating gyroscope: design, fabrication and characterization[J]. IEEE Sensors Journal, 2015, 15(9): 4974-4985.
[6]Sorenson L D, Gao X, Ayazi F. 3-D micromachined hemispherical shell resonators with integrated capacitive transducers[C]. Proceedings of the 25th IEEE International Conference on Micro Electro Mechanical Systems, 2012:168-171.
[7]庄须叶, 汪为民, 陶缝刚, 等. 非正交二维MEMS倾斜镜的研制[J]. 光学精密工程, 2011, 19(8): 1845-1851.
ZHUANG Xu-ye, WANG Wei-min, TAO Feng-gang, et al. Development of non-perpendicular 2D MEMS tilt mirrors[J]. Optics and Precision Enigineering, 2011,19(8): 1845-1851.
[8]李永刚. PDMS微流控芯片关键工艺技术研究[D]. 中国科学院长春光学精密机械与物理研究所, 2006.
LI Yong-gang. Study on key processes and techniques of PDMS microfluidic [D]. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2006.

基金

国家自然科学基金(编号:51875585)
PDF(2116 KB)

509

Accesses

0

Citation

Detail

段落导航
相关文章

/